
List Decoding of Reed-Solomon Codes
Laure Fouard

Department of Computer Science
University of Calgary, Alberta

Abstract—In cryptography, the data in often transmited
through a noisy channel. Hence one needs to have error-
correcting codes, in order to recover from the possible errors.
Moreover, in the case of large error rates, it is better to use
list-decoding. In this paper we focus on the Reed-Salomon error-
correcting code and on its list-decoding technic. We will explain
deeply how the algorithms work, in order to be able to use them
to solve other hard problems.

Index Terms—Cryptography, error-correcting codes, list de-
coding.

I. I NTRODUCTION

Nowadays, communication is one of the most important
issue in computer science and it includes a wide range of
research areas, each of them aiming at solving different
problems.
Coding theory deals with encoding and decoding of infor-
mation. The encoding process is required to be efficient (in
terms of time and space), but also to satisfy some properties
which allow the decoding to be efficient as well. The decod-
ing question follows from the fact that when a message is
transmitted from a sender to a receiver, most of the time, it
is done through a noisy channel. This results in the loss of
parts of information which could be symbols erasure or errors
occurring in the transmission. The receiver will try to recover
the initial message by correcting errors and retrieving erased
symbols.
Error-correcting codes allow the receiver to detect and correct
errors (within some bounds) in the received message. Usually,
errors are corrected by looking for the closest codeword from
the received one. But, this process is not sufficient for highly
noisy channels where the closest codeword is not always the
transmitted one. That is why, among those codes, list-decoding
has been widely studied because it allows error-correctingfor
a potentially large number of errors.
List decoding has been first introduced by P. ELIAS in [1].
The main idea is, rather than providing the closest codeword,
to compile a list of codewords that are enough close from the
transmitted message, ensuring that the transmitted codeword
is part of this list.
M. Sudan and more recently V. Guruswami did a wide work
on the question of decoding Reed-Solomon codes, which are
known to provide good properties (see [2], [3], [4]). M. Sudan
published in 1997 in [5] the first algorithm using the technicof
list decoding to decode Reed-Solomon codes. This algorithm
was already an important improvement in decoding this kind
of code. In 1999, he published together with V. Guruswami
in [6] a new version of the first algorithm where some steps

were deeply improved thanks to some smart wheezes.
The interesting features of this algorithm give rise to the
question of whether it could be or not adaptable to solve some
open problems such as decoding in cases of insertions and
deletions occurring in the received message.
This report focuses on giving a deep and clear explanation
of those two algorithms which, once understood, could give
tracks toward the resolution of other problems.

II. REED-SOLOMON CODES

Coding theory aims at the transmission of a message while
keeping it unreadable for the persons which are not receivers.
To process it, a sender will encode a message, usually using
some kind of mathematical keys which are also owned by the
receiver to decode the message. The challenge comes from the
fact that a message is most of the time transmitted through a
noisy channel. The consequence is that the received message
might contain errors, deletions and/or insertions. Thus, the
encoding method has to provide a mean to recover the initial
message from the received one.
Reed-Solomon codes are part of a type of codes named
block error-correcting codes. Those concepts are defined and
explained in the following.

A. General Definition: Block Error-Correcting Code

Error-correcting codes are usually linear codes using a finite
field Fq as alphabet. The most often,q = pm, wherep is a
prime number andm > 1.
The error-correcting property is achieved by block codes
where a codeword contains, besides the message information,
some additional data providing a way to recover from modified
or erased parts of the received word. Thus, in a codeword of
lengthn, k symbols are expressing the message information
while n � k symbols give a way to check and correct
the information symbols (i.e. redundancy). From all those
parameters follows the distance of the code, which is computed
using Hamming distance between codewords:

Definition 1 The Hamming distance between two words of
equal length is the number of positions for which the corre-
sponding symbols are different.
The Hamming distance between two wordsx andy is denotedD(x; y).
Example: Let x and y be two words of length5 over the
alphabet given byF7, with x = 24615 andy = 34625. Then,
the Hamming distanceD(x; y) equals2.

Hence, we give below the formal definition of a code,
together with two important features which are the error
detection and correction capabilities:

Definition 2 A block error-correcting code C is caracterized
by:� The size of the alphabetq .� The length of the codewordsn.� The information parameterk , giving the size of the codeC: jCj = qk .� The minimum Hamming distance of the coded which is

the minimum Hamming distance between any two distinct
members of the code.

The codeC is denoted((n; k)q ; d)
Definition 3� Theerror detection capability of a code is the maximum

number of errors which are allowed to occur in the
transmitted word while always remaining detectable by
the receiver. Then, in block error-correcting codes, the
error detection capability isd � 1.� Theerror correction capability of a code is the maximum
number of errors which are allowed to occur in the
transmitted word while always remaining possible for
the receiver to recover the original word. Then, in block
error-correcting codes, the error correction capability isbd�12
.

Example: We could imagine a simple (parity check) code
whose principle would be to take in order and two by two
the symbols of the word to be encoded, to add them (moduloq) and add the results at the end of the string. Consider the
code denoted by((n; k)q ; d) where:� n = 3 is the length of the codewords.� k = 2 is the length of the words before being encoded.� q = 2 is the size of the alphabet (� = f0; 1g).� d = 2 is the minimum Hamming distance between two

codewords.

For instance, letx = 01 be the word to be encoded. Then,
the corresponding codeword will bey = 011 where the last
bit is the sum of the first two modulo2.
One can observe that it is possible to detect one error with
this particular code, given that the minimum Hamming
distance is2. However, it is not possible to correct this error
even if it is detected: for certain codewords transmitted with
one error, we could find back the initial codeword but not for
all: for example, ify is transmitted through a noisy channel
which deliver to the receivery0 = 001, then, there is a unique
codeword
 among the possibilities such thatD(
; y0) = 1,
and this codeword
 is actuallyy; but if the received word
is y00 = 111, then there are two different codewords which
could match:y1 = 101 andy2 = 110. Thus, it is notalways

possible for the receiver to correct one error.
Those observations agree with the definitions of error
correction and detection capabilities above.

In this report, we are particularly interested in Reed-Solomon
codes which are detailed in the following.

B. Reed-Solomon Codes

Definition 4 GRS-CodeGRSq;n;k ;~�;~vGRSq;n;k ;~�;~v is an error-correcting code from the class:((N = n;K = k + 1)q ;D = n � k) where:� The alphabet� is over a finite fieldFq .� n 6 q� K is the size of a message~m = (mi)Ki=1 to be encoded.� ~� = (�i)ni=1 is a vector of distinct elements fromFq
named the "selector".� ~v = (vi)ni=1 is a vector of non-zero elements fromFq
named the "multiplier".

a) GRS Coding Process:
Informally, the message to be encoded provides the coeffi-
cients of a univariate polynomialP overFq . Due to the size
of the messagem, P is of degree at mostk .
The encoding of messagem = (mi)Ki=1 is given by:81 6 j 6 n; (GRSq;n;k ;~�;~v(~m))j = vj : kXi=0 mi+1(�j)i
For simplicity’s sake, the multiplier will be the1-vector in
the following.

Example:
Consider the GRS-code denoted byGRSq;n;k ;~�;~v where:� q = 5� n = 5� k = 3� � = (3; 2; 3; 1; 2)� ~v = (1; 1; 1; 1; 1)
Then, the encoding of a messagem = (4; 2; 1; 1) results in
the codeword
 = (
i)16i6n such that8i; 1 6 i 6 n;
i = P (�i), whereP is polynomial taking
the mi’s as coefficients:P (x) = 4 + 2x + x2 + x3 Thus,
 = (1; 0; 1; 3; 0)

III. L IST DECODING

A. General Definition

When a codeword is transmitted over a noisy channel, the
received wordr is corrupted by the channel. The classical
correction consists in finding the closest codeword from the
received one. But, in this case, the error correction capability
is only bd�12
. List-decoding aims to improve this bound by
proceeding as follows: The receiver compiles a list of all
codewords contained in a "reasonable" Hamming ball aroundr , that is to say, all codewords different fromr in at moste places, wheree is the radius of the Hamming ball. The
list-decoding is successfull if the list contains the transmitted

word.
More formally, the list-decoding problem is expressed as
follows:

Definition 5 List Decoding Problem for a Code C
Input: Received wordr 2 f0; 1; :::; q � 1gn , error bounde.
Output: List of codewords
1; :::;
m 2 C such that:81 6 i 6 m;D(r ;
i) 6 e
whereD(x; y) is the Hamming distance fromx to y.

B. List Decoding in RS-Codes Context

Definition 6 List Decoding Problem for a CodeGRSq;n;k ;~�;~v
Input: Received word~r 2 f0; 1; :::; q � 1gn , error bounde.
Output: List of polynomialsP1; :::; Ps 2 Fq[x℄ such that:� 81 6 i 6 t, Pi(x) =Pkj=0 pi;j :xj� 81 6 i 6 m;D(r ; (pi;j)kj=0) 6 e, whereD(x; y) is the

Hamming distance from x to y.

Here is a definition for the specific case of GRS list decoding:

b) GRS-Decoding / Polynomial Reconstruction:

Definition 7 Polynomial Reconstruction ProblemPR
Input: Integersk , t , andn pointsf(xi; yi)gni=1 wherexi; yi 2Fq
Output: All univariate polynomialsP of degree at mostk such
that yi = P (xi) for at leastt values ofi 2 f1; :::;ng
One can easily see the following:

Theorem 1 The GRS-decoding problem reduces to the poly-
nomial reconstruction problem.

A GRS-decoding could be performed by solvingPR(k ;n �e;n; f(�i; rivi)gni=1)
To make it clearer,f(�i; rivi)gni=1) will be simply writtenf(xi; yi)gni=1 in the following.

IV. SUDAN AND GURUSWAMI ALGORITHM

List decoding is widely used because it allows a large
number of errors.
Some decoding algorithms have been designed but M. Sudan
and V. Guruswami’s algorithm is actually the first one pre-
senting a real improvement in efficiency.
This algorithm published in 1999 in [6] is an improvement of
a previous algorithm of Sudan published in 1997 in [5].
To allow a deep comprehension of this important algorithm, it
is necessary to understand the first one. Therefore, the algo-
rithm presented in [5] will be explained first. Then, we give
the improvements provided by Sudan and Guruswami in 1999.
In both cases, the informal description of the algorithm will be
given first, to finally go into the formal algorithm overview,
together with theorems and proofs ensuring correctness and
polynomial runtime.

A. Tracks and Tricks Leading to the Algorithms

Allowing a certain number of errorse, provided e <n � pkn , the goal is to find an efficient way to output all
the possible polynomials overFq of degree at mostk which
fit at least t = n � e points among then (xi; yi)’s. Given
that the running time of an algorithm is lower bounded by
the output size, the output list has to be of polynomial size to
ensure efficiency. A brute-force algorithm trying all possible
polynomials is, of course, not an efficient way to solve the
problem, such an enumeration would lead to an exponential
runtime: j�jO(k). It appears that it would be preferable to
output the whole set of solutions rather than enumerating them.
Now, several observations have been decisive to find a repre-
sentation of the solution, from which follows the algorithm:� The first of them is that we know efficient algorithms to

factorize polynomials in finite fields (Cantor-Zassenhaus,
Berlekamp). This can be useful if we could output at
some point a big polynomialQ containing all the poly-
nomialsP1; :::; Ps which are actually part of the solution
as factors.� As long asQ is a product of polynomials from the
solution, eachPj should be a root ofQ, which can be
written: 8j; 1 6 j 6 s; (y � Pj(x))jQ(y)
where the variablesx andy are not related to each other.
From there,Q would be a bivariate polynomial:Q(x; y) = Xj1;j2>0 qj1;j2xj1yj2� Furthermore, one can make the following observation:8j; 1 6 j 6 s;(y � Pj(x))jQ(x; y)) Q(x; Pj(x)) = 0, Xj1;j2>0 qj1;j2xj1Pj(x)j2 = 0
This is a linear system in the unknownsfqj1;j2gj1;j2>0
and withn equations:Ei : Xj1;j2>0 qj1;j2xj1i yj2i = 0;8i; 1 6 i 6 n
A linear system is known to be solvable in polynomial
time.� At last, to obtain a well-formed set of equations, we have
to find upper bounds forj1 and j2. Those bounds are
provided by two facts:

1) We need to ensure that the system of equations
actually has a solution, which just means that there
are more unknowns than equations:jfqj1;j2gj1;j2>0j > n

2) Moreover, we know that eachPj has at mostt roots
among the(xi; yi)’s, which leads to:kj2 6 t

These two inequalities give rise to the bounds we need
(Details to be showed later).

B. First Algorithm: Sudan, 1997

This first algorithm, published in [5], is basically built from
the statements above. To make it clearer, we introduce a new
notation:

Definition 8 (Weighted Degree)� For all weightsw1; w2 > 0, the (w1; w2)-weighted degree
of a monomialxiyj is defined to beiw1 + jw2.� For a bivariate polynomialQ(x; y), and weightsw1; w2 >0, the (w1; w2)-weighted degree ofQ, denoted(w1; w2) �wt � deg(Q), is the maximum over all monomials with non-
zero coefficient inQ of the (w1; w2) weighted degree of the
monomial.

As explained above, we firstly aim at constructing a bivariate
polynomial Q(x; y) = Pj1;j2>0 qj1;j2xj1yj2 whose coeffi-
cients will constitute the unknowns of the linear system to
be solved. Given the latter definition, it is possible to givean
explicit expression of upper bounds onj1 andj2. Indeed, the
bivariate polynomialQ is built such that they’s will end to be
the polynomial we want to find, which are part of the solution.
Thus, provided that each of those polynomials should havet
"roots" among the input points,j1 andj2 have to be such that
the (1; k)-weighted degree ofQ would be strictly less thant .
This gets rise to the parametersm and l specified as follows:

1) (1; k)�wt� deg(Q) 6 m+ lk < t wherem and l are
the respective upper bounds forj1 andj2.

2) Using those news parameters, we can compute a upper
bound for the number of unknowns |fqj1;j2gj16m;j26l|.
To ease the comprehension of this computation, one can
take a look at the figure 1, which represents the set of
unknowns which can be constructed according to the
provided upper bounds:

Then we compute the sum:(m+ 1)(l + 1) + k lXi=1 i = (m+ 1)(l + 1) + k l(l + 1)2= (m+ 1)(l + 1) + k (l + 1)!(l + 1� 2)!2!= (m+ 1)(l + 1) + k�l + 12 �
This provides the second needed inequality from which it

is now possible to determine them and l parameters.
Given: m+ lk < t (1)

(m+ 1)(l + 1) + k�l + 12 � > n (2)

The parameters optimization is done as follows:� First, we can compute the smallestm for which (2) holds:m > n + 1� k�l+12 �l + 1 � 1 (3)

which, taken together with(1), leads to:t > n + 1� k�l+12 �l + 1 � 1 + lk + 1, t > n + 1l + 1 + k l2
Setting t to its minimum value, we can then minimize
the parameterl, by considering the expression above as
a function of the unknownl and derivate it:f(l) = n + 1l + 1 + k l2f 0(l) = �(n + 1)(l + 1)2 + k2f 0(l) = 0, l =q 2(n+1)k � 1 (4)� The setting ofl yields, given(3):m > n + 1� k�l+12 �l + 1 � 1, m > n + 1l + 1 � k l2 � 1, m > n + 1q 2(n+1)k � k(q 2(n+1)k � 1)2 � 1

(from (4)), m > (n + 1)pkp2(n + 1) � p2k(n + 1)� k2 � 1, m > 2(n + 1)pk � 2(n + 1)pk + kp2(n + 1)2p2(n + 1) � 1, m > k2 � 1 (5)

c) Construction of the Linear System:
Given the parameters computed above, it is now possible to
give an expression forQ:Q(x; y) = lXj=0 m+(l�j)kXd=0 qdjxdyj
Thus, the linear systemS to be solved contains then equations
obtained from:S : 8>><>>: E1 : Plj=0Pm+(l�j)kd=0 qdjxd1yj1 = 0

...
...En : Plj=0Pm+(l�j)kd=0 qdjxdnyjn = 0

q0;0 q1;0 q2;0 : : : qm;0q0;1 . . .
...q0;2 . . .
...

...
. . .

...q0;l : : : : : : : : : qm;l| {z }(m+1)(l+1)
qm+1;0 qm+2;0 : : : qm+k ;0qm+1;1 . . .

...
...

. . .
...qm+1;l�1 : : : : : : qm+k ;l�1 : : : qm+(l�1)k+1;0 : : : qm+lk ;0| {z }kl+k(l�1)+:::+k

Fig. 1. Set of unknowns which can be constructed according tothe provided upper bounds

The resolution of this system can be done in polynomial time
and provides the values ofQ’s coefficients. From now,Q is
ready to be factorized.

d) Algorithm Overview:

Sudan’s Algorithm (1997) [5]

Input: k ; t ; f(xi; yi)gni=1 wheret = n � e
1 Parametersl andm setting.(m = d k2 e � 1l = dq 2(n+1)k e � 1

2 Find Q : F2q ! Fq such that:8<: (1; k)� wt� deg(Q) 6 m+ lk8i; 1 6 i 6 n; Q(xi; yi) = 0Q is not identically zero
(Construction and resolution of the linear system)

3 Factorization ofQ.

4 Output all the polynomialsP such that:(y � P (x))jQ(x; y) andf(xi) = yi for at leastt values ofi.
e) Algorithm Benefits and Drawbacks:

This algorithm solve the problem and outputs the solutions list
in polynomial time inn provided:t = O(pnk) and

kn < 13
In the previous list decoding algorithms for RS codes, the best
thresholdt achieved was:t > (n+k+1)=2. The difference is
visible when comparing the fraction of agreement (t=n) for a
largen: After fixing k , we letn tend to the infinity to observe
the consequences on the fraction of agreement:� In the previous algorithms:limn!1 tn = 12 . This means

that, however important could ben, those algorithms
still need the half of the received word at least to be
correct to be able to solve the problem in the allocated

time.� In Sudan’s algorithm:limn!1 tn = 0, which shows
that the fraction of agreement required by this algorithm
approaches zero whenn is important.

This improvement is already a considerable leap in list decod-
ing of Reed-Solomon codes. However, the condition such thatkn < 13 is an awkward limitation given that the codes satisfying
this bound are not the most efficient we can produce. Then,
one of the first motivation of the improved algorithm below
was to go over this bound.

C. The Improvement: Sudan and Guruswami, 1999

This second algorithm published in [6] is based on the one
explained above. It is modified in order to get an important
running time improvement.
The idea is to catch the list of polynomials which are actually
part of the solution faster during the factorization phase.To
reach this goal, an additional constraint is applied onQ to
remove the polynomials which are not good enough to be
candidates for the solution. This increases the running time
in the construction phase ofQ, but, since the factorization is
done faster and less verifications are needed in the last phase,
the gain of efficiency remains considerable.

f) Informal Description:
Whereas in the first algorithm, it is required thatQ(xi; yi) = 0
for all the points(xi; yi); in the second one, each(xi; yi) has
to be a "singularity" ofQ. This forces all the polynomialsPj
obtained from the factorization to be good candidates, which
means that they actually have several roots each, among then possibilities provided by the input points. Singularitiesare
usually defined with partial derivatives, since it is well-known
that a factor being present with an exponent greater than1 in a polynomial is also present in its derivative with an
exponent decreased by1. However, partial derivatives do not
behave properly in fields with small characteristic, because
a factor with an exponent being a multiple of the field
characteristic would nullify the whole factor in the derivative.
That is why the concept of "shifts" is used instead. This is
equivalent, according to the goal we aim. The principle is
that the coordinate system is shifted to make a point(xi; yi)
becoming the origin. Then, some new conditions on the
obtained shifted polynomial are added to the linear system

to force thePj ’s to pass through input points(xi; yi) rather
than just random points ofQ. We also need to ensure that
thePj ’s property saying that they are factors ofQ still holds.
Here is a smart wheeze to deal with this restriction:
A polynomialPj being part of the solution has to be a root
of Q. This means that for all thePj ’s part of the solution,Q(x; Pj(x)) = 0. We need a trick to force this equality to
be true, even before the system of equations determining the
coefficients ofQ is solved. That is why the following fact is
useful: whenever a polynomial divides another one, either the
degree of the former is smaller than the degree of the latter,
then the dividing polynomial is a factor of the other one; or
it is the opposite, then the divided polynomial equals zero.
Thus, we want to find a factor inQ(x; Pj(x)) of whom the
exponent could be increased while ensuring that it is still a
divider of Q(x; Pj(x)).

g) Formal Description:
We first give a formal definition of a shifted polynomial:

Definition 9 (Shifted Polynomial)
Given a polynomialQ such that8(x; y) 2 F2; Q(x; y) =PiPj qi;jxiyj and a point(�; �) 2 F2, the shifted polyno-
mial Q(�;�) to the point(�; �) is written:Q(�;�)(x; y) = Q(x+ �; y + �)
It provides the following relation between the coefficientsqi;j
of Q and the coefficients(q�;�)i;j resulting from the shift:(q(�;�))i;j =Xi0>iXj0>j� i0i �� j0j � qi0;j0�i0�i�j0�j (6)

The equation(6) is necessary to write the new linear systemS0 to be solved. But, first of all, we need to compute new
parameters to determine the precise expression ofQ, of
whom the coefficientsqi;j are the unknowns of the target
system.
In our case, the shifted polynomial to the point(xi; yi) will
be writtenQ(i).

From this definition, we can deduce some equalities which
will allow us to get the algorithm working.
Given a polynomialP which would be part of the solution,
we define a new polynomialP 0 such that:P 0(x) = P (x+ xi)� yi (7)

Then, we observe thatP 0(0) = 0 which means that there exists
a polynomialP 00 such that:P 0(x) = xP 00(x) (8)

On an other hand, it is true that:Q(x; P (x)) = Q(i)(x � xi; P (x)� yi)
(By the shift definition)= Q(i)(x � xi; P (x� xi + xi)� yi)= Q(i)(x � xi; P 0(x� xi))

(Where P’ is defined in (7))

Thus, substitutingP 0(x� xi) by (8):Q(x; P (x)) = Q(i)(x � xi; xP 00(x� xi))
At last, this expression shows that, if there is no coefficient
in Q(i) of total degree less that a valuer, then xr dividesQ(i)(x� xi; xP 00(x� xi)).
By shifting back, we obtain that, under the same condition,(x� xi)r dividesQ(x; P (x)).
This is from where the parameterr, and as a consequence, the
parameterl, can both be computed.

h) Parameters Setting:
This algorithm requires two parameters of whom the
optimization is entangled.� The parameter r:

Combining the informal and formal descriptions, we
found the factor ofQ(x; Pj(x)) of whom the exponent
can be increased until reaching the necessary degree
to forceQ(x; Pj(x)) being zero. The first parameterr
provides the needed value of the exponent to achieve
this property. Knowing that the sought polynomials must
agree with at leastt of the n input points, there will be
at leastt factors (x � xi)r dividing Q(x; Pj(x)) for a
given polynomialPj . Thus,rt has to be strictly greater
than the degree ifQ. Oncer is determined, one just has
to nullify, for all i 2 [1; : : : ;n℄, all theQ(i)’s coefficients
of total degree less thanr. This will provide some new
equations in the linear system to be solved:8i; 1 6 i 6 n; 8j1; j2 > 0 such thatj1 + j2 < rq(i)j1;j2 = Xj01>j1 Xj02>j2� j01j1 �� j02j2 � qj01;j02�j01�j1�j02�j2 = 0

(By definition (6))
From now, we know, according tor, how many equations
the new linear systemS0 consists in.S0 contains then
old equations provided by the first condition, and the new
ones,n for each of the possibility of positive integers
pairs(j1; j2) such thatj1+j2 < r. The resulting number
of equations inS0 is:n +n rXi=1 i = n +n r(r + 1)2 = n(� r + 12 �+1) (9)

Now, we need to get some information from the setting
of the second parameter to continue the computations.� The parameter l:
Let l be the degree ofQ, i.e. (1; k)� wt� deg(Q) 6 l.
We saw above thatrt has to be strictly greater than the
degree ofQ, i.e. rt > l.
Knowing that it is always better to minimize the param-
eters we can, we setl as follows:rt � 1 (10)

From l, we can determine the number of monomials inQ, and then the number of unknowns in the system (cf.

q0;0 q1;0 : ql;0q0;1 : ql�k�1;1q0;2 : : : : : : : : : : : : : : : ql�2k�1
...

...
. . . : : : : : :q0;b lk
�1 : : : qk�1;b lk
�1q0;b lk
| {z }

Fig. 2. Monomials inQ
figure 2).

This figure leads to the following computation :figure 2 = 1+ b lk
Xi=1 = 1+k b lk
(b lk
+ 12) = 1+ l(l+ k)2k
(11)

This gives rise to the last inequality which has to hold
to make the algorithm work, and so to find the explicit
expression ofr.� Finally, r:
Givenr, we have to be sure of the existence of a solution
for the linear systemS0. Then, the numbers of unknowns
has to be greater than the number of equations which,
thanks to expressions(9) and (11), is given by:n(� r + 12 �+ 1) < 1 + l(l+ k)2k
Then, this inequality is simplified to get an expression
easier to solve:n � r + 12 � < l(l+ 2)2k (k > 1)n � r + 12 � < (rt � 1)(rt + 1)2k (from (10))n (r + 1)!(r � 1)! < r2t2 � 1kn(r2 + r) < r2t2 � 1k(r2 + r)kn < r2t2 � 10 < r2(t2 � kn)� t � rkn
Then, we solve the following second degree equation to
get the minimum value forr:r2(t2 � kn)� knr � 1 = 0
We keep the greatest of the two solutions to ensure
correctness:r = kn +pk2n2 + 4(t2 � kn)2(t2 � kn)
Finally, r is set as follows:r = 1 + bkn +pk2n2 + 4(t2 � kn)2(t2 � kn)

Now, the method is fully explained and parameters set, the
algorithm can be processed as shown below:

i) Algorithm Overview:

Sudan and Guruswami’s Algorithm (1999) [6]

Input: k ; t ; f(xi; yi)gni=1 wheret = n � e
1 Parametersr and l setting:(r = 1 + b kn+pk2n2+4(t2�kn)2(t2�kn)
l = rt � 1

2 Find Q : F2q ! Fq such that:8<: (1; k)� wt� deg(Q) 6 l8i; 1 6 i 6 n; Q(i) is a shift ofQ to (xi; yi)Q is not identically zero

3 Factorization ofQ into polynomials of degree at mostk .

4 Output all the polynomialsP such that:(y � P (x))jQ(x; y) andf(xi) = yi for at leastt values ofi.
j) Algorithm Gains:

Whereas the previous algorithm could not deal with RS codes
whose parameters would lead tokn > 13 , the algorithm
presented in [6] can solve the problem and output the correct
solutions list within a polynomial running time as long as the
upper bound on the number of errors is satisfied, as shown in
the following theorems from the article:

Theorem 2 The algorithm of [6] on imputsn, k , t and the
pointsf(xi; yi) : 1 6 i 6 ng, correctly solves the polynomial
reconstruction problem providedt > pkn
Theorem 3 For a given family of GRS codes of constant rate� = kn , an error-rate of� = en = 1�p� (i.e. e < n �pkn)
can be list-decoded in timeO(n15). When� < 1�p�, then
the decoding time reduces toO(n3)
(The proofs are omitted here since they are clear in the paper)

V. DEALING WITH INSERTIONS

A. [6] for Insertions and Deletions Problem ?

One question to be answered was whether the algorithm de-
scribed in [6] could be adapted to list decoding of GRS codes
in cases of insertions and/or deletions. It finally appears that
this adaptation could not happen because the input "shapes"
would be very different: In the case of simple errors, the input
contains a list of points(xi; yi) among whom it is known thatt are correct.
In the case of deletions and insertions, the input will contain
a set of possiblexi’s for eachyi. Furthermore, whereas those
sets are surely containing the actual correct value ofxi for
eachyi in the case of insertions, this is not sure anymore in
cases of deletions occurring.
These observations lead to think that the algorithm described
in this report could not be modified efficiently to solve this
new problem.
Once this fact is stated, it appears that a few analysis might
answer some questions. Thus, in the next part will be com-
puted the size of the list which would have to be output by
a list decoding algorithm in case of insertions present in the
received word.

B. Size of the List in Insertions Cases

Let x be a word encoded by a GRS code denotedGRSq;n;k ;~�;~v as defined in the beginning. Letr be the number
of insertions which occurred in the received wordy. Thus, the
length ofy is n + r.
We want to count how many words could bex, given y, i.e.
the sizejLj of the expected output list. There are as many
codewords as manners to place ther insertions among then + r symbols of the received word. So the size of the list is
given by: jLj = � n + rr �
Finally, for a fixedn, an evaluation of the list size for a givenr will be denotedjLjr and it appears that this is bounded by
a polynomial inn: jLjr = O(nr)
Then, it is always possible to process a brute force algorithm
which would check all the possible solutions in polynomial
time, however, this polynomial could be large.

C. Open Problem: Deletions

Adding the possibility of deletions occurrences is a hard
problem since at one position of the string, the symbol could
be either still present in the received word, or have been
deleted. Then, trying to solve the problem in a brute force
manner is no longer efficient because the set of possibilities
for one symbol in the codeword we are looking for is actually
the whole alphabet.
From this, it appears obvious that the deterministic way will
not provide a good algorithm. A probabilistic algorithm might
give good results, but then, we are not fully sure that the output
list always contains the sought codeword.

VI. CONCLUSION

The comprehension of the algorithm of M. Sudan and V.
Guruswami is definitely essential to be able to use it in
the resolution of other problems. Indeed, since each single
parameter has a precise and crucial role, it is important to
understand each of them to be sure that a new problem is
reducible to the polynomial reconstruction problem solvedin
this algorithm. Furthermore, even an apparently close problem,
as it can be thought for the reconstruction in cases of insertions
and deletions, appears to be totally different. However, this
algorithm takes advantage from some clever mathematical
properties which look universal, and then, it is expectablethat
one could use this technic to solve or improve some questions
remaining unanswered.
On another hand, dealing with insertions and deletions ap-
peared far more difficult than expected, and the solution
given in [6] is apparently not the track to be followed. The
probabilistic way might be gainful but it requires an effortof
formalization and a precise problem stating to give a strong
frame to this exploration.

REFERENCES

[1] P. Elias, “List decoding for noisy channels,” in1957-IRE WESCON
Convention Record. Massachusetts Institute of Technology: Research
Laboratory of Electronics, 1957, pp. 94–104.

[2] V. Guruswami and M. Sudan, “List decoding algorithms forcertain
concatenated codes,” inSTOC ’00: Proceedings of the thirty-second
annual ACM symposium on Theory of computing. New York, NY, USA:
ACM, 2000, pp. 181–190.

[3] M. Sudan, “List decoding: Algorithms and applications,” SIGACT News,
vol. 31, pp. 16–27, 2000.

[4] ——, “Maximum likelihood decoding of reed solomon codes,” in Pro-
ceedings of the 37th Annual IEEE Symposium on Foundations ofCom-
puter Science, 1996, pp. 164–172.

[5] ——, “Decoding of reed solomon codes beyond the error-correction
bound,” Journal of Complexity, vol. 13, no. 1, pp. 180–193, 1997.

[6] V. Guruswami and M. Sudan, “Improved decoding of reed-solomon and
algebraic-geometric codes,”IEEE Transactions on Information Theory,
vol. 45, pp. 1757–1767, 1999.

	Introduction
	Reed-Solomon Codes
	General Definition: Block Error-Correcting Code
	Reed-Solomon Codes

	List Decoding
	General Definition
	List Decoding in RS-Codes Context

	Sudan and Guruswami Algorithm
	Tracks and Tricks Leading to the Algorithms
	First Algorithm: Sudan, 1997
	The Improvement: Sudan and Guruswami, 1999

	Dealing with Insertions
	SuGu99 for Insertions and Deletions Problem ?
	Size of the List in Insertions Cases
	Open Problem: Deletions

	Conclusion
	References

