List Decoding of Reed-Solomon Codes

Laure Fouard
Department of Computer Science
University of Calgary, Alberta

Abstract—In cryptography, the data in often transmited were deeply improved thanks to some smart wheezes.
through a noisy channel. Hence one needs to have error- The interesting features of this algorithm give rise to the
correcting codes, in order to recover from the possible erres. o etion of whether it could be or not adaptable to solve some

Moreover, in the case of large error rates, it is better to use . . . .
list-decoding. In this paper we focus on the Reed-Salomon mr-  OP€N problems such as decoding in cases of insertions and

correcting code and on its list-decoding technic. We will eplain ~ deletions occurring in the received message.
deeply how the algorithms work, in order to be able to use them This report focuses on giving a deep and clear explanation

to solve other hard problems. of those two algorithms which, once understood, could give

('jr.‘dex Terms—Cryptography, error-correcting codes, list de-  yracks toward the resolution of other problems.
coding.

Il. REED-SOLOMON CODES

. INTRODUCTION . . . .
Coding theory aims at the transmission of a message while

Nowadays, communication is one of the most importareeping it unreadable for the persons which are not receiver
issue in computer science and it includes a wide range Td process it, a sender will encode a message, usually using
research areas, each of them aiming at solving differegdme kind of mathematical keys which are also owned by the
problems. receiver to decode the message. The challenge comes from the
Coding theory deals with encoding and decoding of infofact that a message is most of the time transmitted through a
mation. The encoding process is required to be efficient (ifvisy channel. The consequence is that the received message
terms of time and space), but also to satisfy some propertiagyht contain errors, deletions and/or insertions. Thas, t
which allow the decoding to be efficient as well. The deco@ncoding method has to provide a mean to recover the initial
ing question follows from the fact that when a message isessage from the received one.
transmitted from a sender to a receiver, most of the time,Rieed-Solomon codes are part of a type of codes named
is done through a noisy channel. This results in the loss lelbck error-correcting codes. Those concepts are defindd an
parts of information which could be symbols erasure or errogxplained in the following.
occurring in the transmission. The receiver will try to reeo
the initial message by correcting errors and retrievingeda A- General Definition: Block Error-Correcting Code
symbols. Error-correcting codes are usually linear codes using tefini
Error-correcting codes allow the receiver to detect andexbr field F, as alphabet. The most often,= p™, wherep is a
errors (within some bounds) in the received message. Ysuafirime number andn > 1.
errors are corrected by looking for the closest codeworthfroThe error-correcting property is achieved by block codes
the received one. But, this process is not sufficient for lyighwhere a codeword contains, besides the message information
noisy channels where the closest codeword is not always #ime additional data providing a way to recover from modified
transmitted one. That is why, among those codes, list-degodor erased parts of the received word. Thus, in a codeword of
has been widely studied because it allows error-correéting length n, k& symbols are expressing the message information
a potentially large number of errors. while n — k symbols give a way to check and correct
List decoding has been first introduced by RIAS in [1]. the information symbols (i.e. redundancy). From all those

The main idea is, rather than providing the closest codewogshrameters follows the distance of the code, which is coetput
to compile a list of codewords that are enough close from thging Hamming distance between codewords:
transmitted message, ensuring that the transmitted cadewo

is part of this list. o . Definition 1 The Hamming distance between two words of
M. Sudan and more recently V. Guruswami did a wide workqya| length is the number of positions for which the corre-
on the question of decoding Reed-Solomon codes, which &nding symbols are different.

known to provide good properties (sée [2], [3], [4]). M. SodaThe Hamming distance between two wardandy is denoted
published in 1997 in [5] the first algorithm using the techwiic D(z,y).

list decoding to decode Reed-Solomon codes. This algorithm

was already an important improvement in decoding this kiriekanple: Let x and y be two words of lengths over the

of code. In 1999, he published together with V. Guruswarnaiphabet given byF;, with = = 24615 andy = 34625. Then,

in [6] a new version of the first algorithm where some steghe Hamming distanc®(z,y) equals2.



possible for the receiver to correct one error.
Hence, we give below the formal definition of a codeThose observations agree with the definitions of error
together with two important features which are the erraorrection and detection capabilities above.
detection and correction capabilities:
In this report, we are particularly interested in Reed-8uln
Definition 2 A block error-correcting code C is caracterized codes which are detailed in the following.
by:
o The size of the alphab —
« The length of the I?:ode%ords Definition 4 GRS-COd&/RS g nk.a,7

« The information parametek, giving the size of the code¥*Sa.n k,a,5 IS an eror-correcting code from the class:
C:|C| = ¢*. (N=n,K =k+1),,D =n — k) where:

« The minimum Hamming distance of the catlhich is ¢ The alphabet is over a finite field,.

the minimum Hamming distance between any two distinct® 7 < ¢ _
members of the code. « K is the size of a message = (m;), to be encoded.

—

. e a = (a;)"_, is a vector of distinct elements froA,
The codeC is denoted((n, k), d) nameE:I tzlle_%‘selector" a

o ¥ = (v;), is a vector of non-zero elements fraff,
named the "multiplier”.

B. Reed-Solomon Codes

Definition 3

o Theerror detection capability of a code is the maximum a) GRS Coding Process:
number of errors which are allowed to occur in thdnformally, the message to be encoded provides the coeffi-
transmitted word while always remaining detectable bgients of a univariate polynomidP over F,. Due to the size
the receiver. Then, in block error-correcting codes, thef the messagen, P is of degree at most.
error detection capability is] — 1. The encoding of message = (m;)X | is given by:

o Theerror correction capability of a code is the maximum &
numbe_r of errors Whlch are allowed_ to occur in the <J <0, (GRS gnpas(m)); = Uj-zmi-i-l(aj)i
transmitted word while always remaining possible for Pt

the receiver to recover the original word. Then, in blocl S . . .
error-correcting codes, the error correction capability i E}‘g f?)llrl?ns\i:(r:]gys sake, the multiplier will be the-vector in
- '

Exanple:

Exanple: We could imagine a simple (parity check) cod€&onsider the GRS-code denoted ®RS g n k4,5 Where:
whose principle would be to take in order and two by two « ¢=5
the symbols of the word to be encoded, to add them (moduloe n =5
¢) and add the results at the end of the string. Consider thes £ =3

code denoted by(n, k),, d) where: e a=(3,2,3,1,2)
« n =3 is the length of the codewords. « 7=(1,1,1,1,1)
o k=2 is the length of the words before being encodedThen, the encoding of a message = (4,2,1,1) results in
« ¢ =2 is the size of the alphabeE(= {0,1}). the codeword: = (¢;)1<ign Such that
e d = 2 is the minimum Hamming distance between tw&'i,1 < i < n, ¢ = P(«;), where P is polynomial taking
codewords. the m;’s as coefficients:P(z) = 4 + 2z + 22 + 23 Thus,

For instance, letz = 01 be the word to be encoded. Then¢ = (1,0,1,3,0)
the corresponding codeword will he= 011 where the last

bit is the sum of the first two modul®. o
One can observe that it is possible to detect one error with General Definition

this particular code, given that the minimum Hamming When a codeword is transmitted over a noisy channel, the
distance i2. However, it is not possible to correct this erroreceived wordr is corrupted by the channel. The classical
even if it is detected: for certain codewords transmittethwicorrection consists in finding the closest codeword from the
one error, we could find back the initial codeword but not faieceived one. But, in this case, the error correction cdipabi
all: for example, ify is transmitted through a noisy channels only L%J. List-decoding aims to improve this bound by
which deliver to the receivey’ = 001, then, there is a unique proceeding as follows: The receiver compiles a list of all
codewordc among the possibilities such thét(c,y’) = 1, codewords contained in a "reasonable” Hamming ball around
and this codeword is actuallyy; but if the received word r, that is to say, all codewords different fromin at most

is ¥ = 111, then there are two different codewords whicle places, wheree is the radius of the Hamming ball. The
could matchzy; = 101 andy, = 110. Thus, it is notalways list-decoding is successfull if the list contains the traiited

IIl. LisT DECODING



word. A. Tracks and Tricks Leading to the Algorithms
More formally, the list-decoding problem is expressed aSAIIowing a certain number of errorg, provided ¢ <

follows: n — Vkn, the goal is to find an efficient way to output all
the possible polynomials ove¥, of degree at most which

fit at leastt = n — e points among then (x;,y;)’s. Given
that the running time of an algorithm is lower bounded by
the output size, the output list has to be of polynomial size t
ensure efficiency. A brute-force algorithm trying all pdissi
polynomials is, of course, not an efficient way to solve the

Definition 5 List Decoding Problem for a Code C
Input: Received word € {0,1,..., ¢ — 1}", error bounde.
Output: List of codewordg,, ..., c,, € C such that:

Vi<i<m,D(r,¢;) <e

where D(z, y) is the Hamming distance from to y. problem, such an enumeration would lead to an exponential
runtime: |X|°®), It appears that it would be preferable to
B. List Decoding in RS-Codes Context output the whole set of solutions rather than enumeratiegnth

Definition 6 List Decoding Problem for a COdgRS ;. a5 NOW: several observations have been decisive to find a repre-
Input: Received word € {0,1, .., ¢ — 1}", error bounde. ~ Sentation of the solution, from which follows the algorithm

Output: List of polynomialsP;, ..., Ps € F,[z] such that: o The first of them is that we know efficient algorithms to
e V1<i<t, Pi(z) = Zl_c_ pi il factorize polynomials in finite fields (Cantor-Zassenhaus,
e V1<ig m,D(r,(pijgj’?_jo) ]g e, where D(z,y) is the Berlekamp). This can be useful if we could output at

some point a big polynomial containing all the poly-
nomials P, ..., P; which are actually part of the solution
Here is a definition for the specific case of GRS list decoding: as factors.

e As long as(@ is a product of polynomials from the

Hamming distance from x to y.

b) GRS-Decoding / Polynomial Reconstruction: solution, eachP; should be a root of), which can be
written:
Definition 7 Polynomial Reconstruction Proble®R Vi, 1< < s, (y = P(2))|Q(y)
Input: Integersk, ¢, andn points{(zi, y) }i=, wherez;,y; € where the variables andy are not related to each other.
T4 L , From there @ would be a bivariate polynomial:
Output: All univariate polynomialg® of degree at most such
that y; = P(x;) for at leastt values ofi € {1,...,n} Q(z,y) = Z Gy oy

. . 41,4220
One can easily see the following: e

« Furthermore, one can make the following observation:
Theorem 1 The GRS-decoding problem reduces to the poly-

nomial reconstruction problem. Vi 1S5 <,

A GRS-decoding could be performed by solvifQR (k, n — (y — P;i(2))|Q(z,y) = Q(z, Pj(z)) =0

e;n){(aia Z_Z) ?:1) - . . . = Z .. .'L'JIP(.’L')]2 =0
To make it clearer{(a;, 1-)}i=;) will be simply written 2 i J
{(zs,y:)}1—, in the following. J1,4220

IV. SUDAN AND GURUSWAMI ALGORITHM

List decoding is widely used because it allows a large
number of errors.
Some decoding algorithms have been designed but M. Sudan . g, g . :
and V. Guruswami's algorithm is actually the first one pre- Bi: 3, nppti'yi =0Vi1<i<n
senting a real improvement in efficiency.
This algorithm published in 1999 inl[6] is an improvement of A linear system is known to be solvable in polynomial
a previous algorithm of Sudan published in 1997[in [5]. time.
To allow a deep comprehension of this important algoritim, i « At last, to obtain a well-formed set of equations, we have
is necessary to understand the first one. Therefore, the algo to find upper bounds foy; and j». Those bounds are
rithm presented in([5] will be explained first. Then, we give  provided by two facts:
the improvements provided by Sudan and Guruswami in 1999. 1) We need to ensure that the system of equations
In both cases, the informal description of the algorithn bé actually has a solution, which just means that there
given first, to finally go into the formal algorithm overview, are more unknowns than equations:
together with theorems and proofs ensuring correctness and
polynomial runtime. {152 birgazol >

This is a linear system in the unknowts;, j,}, j.>o0
and with n equations:

J1,j220



2) Moreover, we know that eadh; has at most roots
among the(x;, y;)’s, which leads to:

kja <t

These two inequalities give rise to the bounds we need,
(Details to be showed later).

B. First Algorithm: Sudan, 1997

This first algorithm, published in [5], is basically builioim
the statements above. To make it clearer, we introduce a new
notation:

Definition 8 (Weighted Degree)

e For all weightsw;,ws > 0, the (wy,ws)-weighted degree
of a monomialziy’ is defined to béw; + jws.

¢ For a bivariate polynomial)(z,y), and weightsw; , wy >

0, the (w1, w»)-weighted degree of), denoted(w;,ws) —
wt — deg(Q), is the maximum over all monomials with non-
zero coefficient iR of the (w,w») weighted degree of the
monomial.

As explained above, we firstly aim at constructing a bivariat
polynomial Q(z,y) = >, J,50.j-2" 4> whose coeffi-
cients will constitute the unknowns of the linear system to
be solved. Given the latter definition, it is possible to gare
explicit expression of upper bounds gnand j,. Indeed, the
bivariate polynomialy is built such that thg's will end to be
the polynomial we want to find, which are part of the solution.
Thus, provided that each of those polynomials should have

On+DU+D+kC;1>>n @)

The parameters optimization is done as follows:

First, we can compute the smallestfor which (2) holds:

l
n+1- k(%)
I+1
which, taken together witlil), leads to:

-1 ®3)

=

n+1-—k(*t!
> nHl-k(G) 1+1k+1
I+1
n+1 N kl
l+1 2
Setting ¢ to its minimum value, we can then minimize
the parametet, by considering the expression above as
a function of the unknowi and derivate it:

=

st

n+1 kil
O=77%3
i —(n+1) &
P =517 *3

Fl)=0e [1= /2 (4)

« The setting ofl yields, given(3):

n—l—l—k(h;l) 3
~ I+1
n+1 ki

"roots" among the input pointg; andj, have to be such that = mz7 1 2
the (1, k)-weighted degree of) would be strictly less than. Y]
This gets rise to the parametersand! specified as follows: - m> " +1 k(\/ = k L 1) 1
1) (1,k) — wt —deg(Q) < m+1lk < t wherem and!l are ~ /2(nk+1) 2
the respective upper bounds for and j.. (from (4))
2) Using those news parameters, we can compute a upper
bound for the number of unknowng}, j, }, <m.j»<il- & m> (n+DVE 2+ 1)k 1
To ease the comprehension of this computation, one can 2(n+1) 2
take a look at the figurgl 1, which represents the set of 2(n + D)VE = 2(n + DOWVk + k/2(n + 1)
unknowns which can be constructed according to the <  m 2 WooES) -1
provided upper bounds: "
Then we compute the sum: 4 m>E—1 (5)
! I(L+1) c) Construction of the Linear System:
(m+1)(+1)+kY i=m+1)(0+1)+ k=——— Given the parameters computed above, it is now possible to
i=1 l \ give an expression fof):
1)!
= (m+1)(l+1)+kﬁ 1 m+(l—j)k .
1+1 o Qz,y) = Z Z dexdy]
:(m+1)(l+1)+k< 5 > j=0  d=0

Thus, the linear syster$i to be solved contains theequations
obtained from:

This provides the second needed inequality from which it
is now possible to determine the and/ parameters.
Given:

m+ 1k <t (1)

l +(—j)k j
E; : ijo E:lnzo( 2 dexfy{ =0

! =)k ;
Eny : Ej:o Z;nzo( & qajziyl =0



oo 41,0 4920 --- Q4m,0
m+1,0  dm42,0 -+ Gm+k,0

qo,1 .
Im+1,1

do,2 . Am+(1-1)k+1,0 -+ Gm+ik,0
qm41,1—1 ce <o Qmtkl-1

Qo v e eee Qmy P

~— kl+k(l—1)+... 4k

(mA1)(1+1)
Fig. 1. Set of unknowns which can be constructed accordintpeqorovided upper bounds

The resolution of this system can be done in polynomial time time.
and provides the values @)’s coefficients. From nowy) is

ready to be factorized. ¢ In Sudan’s algorithm:limnﬁoo% = 0, which shows
that the fraction of agreement required by this algorithm
d) Algorithm Overview: approaches zero whemnis important.

This improvement is already a considerable leap in list deco
ing of Reed-Solomon codes. However, the condition such that
% < % is an awkward limitation given that the codes satisfying

Sudan’s Algorithm (1997) 5]

Input: &, ¢, {(zi, i)} wheret =n —e this bound are not the most efficient we can produce. Then,
one of the first motivation of the improved algorithm below
Parameter$ andm setting. was to go over this bound.
_ Tk
= [\/@] 1 C. The Improvement: Sudan and Guruswami, 1999
This second algorithm published inl [6] is based on the one
Find Q : }-2 — F, such that: explgineq abgve. It is modified in order to get an important
running time improvement.
(1,k) —wt — deg(Q) <m + 1k The idea is to catch the list of polynomials which are acguall
Vi, 1<i<n,Q(zi,y;) =0 part of the solution faster during the factorization phake.
@ is not identically zero reach this goal, an additional constraint is applied@rto
(Construction and resolution of the linear system) remove the polynomials which are not good enough to be
candidates for the solution. This increases the running tim
Factorization of@). in the construction phase @}, but, since the factorization is
done faster and less verifications are needed in the lasephas
Output all the polynomialsP such that: the gain of efficiency remains considerable.
(y - P(«))|Q(x,y) and -
f(z;) = y; for at leastt values ofi. f) Informal Description:

Whereas in the first algorithm, it is required tliagz;,y;) = 0
for all the points(z;, y;); in the second one, each;, y;) has
to be a "singularity” ofQ). This forces all the polynomial®;
obtained from the factorization to be good candidates, whic
means that they actually have several roots each, among the
n possibilities provided by the input points. Singularite®
1 usually defined with partial derivatives, since it is wetlevn
t= O(\/%) and; < 3 that a factor being present with an exponent greater than
) ] _ ] 1 in a polynomial is also present in its derivative with an
In the previous list decoding algorithms for RS codes, th& beyynonent decreased Hy However, partial derivatives do not
threshold: achieved wast > (n+k+1)/2. The difference is penave properly in fields with small characteristic, beeaus
visible when comparing the fraction of agreemenfr) fora 5 tactor with an exponent being a multiple of the field
largen: After fixing &, we letn tend to the infinity to observe characteristic would nullify the whole factor in the detiva.
the consequences on the fraction of agreement: That is why the concept of "shifts" is used instead. This is
« In the previous algorithmdim,, % = % This means equivalent, according to the goal we aim. The principle is
that, however important could be, those algorithms that the coordinate system is shifted to make a pginfy;)
still need the half of the received word at least to bbecoming the origin. Then, some new conditions on the
correct to be able to solve the problem in the allocatesbtained shifted polynomial are added to the linear system

e) Algorithm Benefits and Drawbacks:
This algorithm solve the problem and outputs the solutigsts |
in polynomial time inn provided:



to force theP;’s to pass through input point&:;,y;) rather Thus, substituting?’ (z — x;) by (8):

than just random points of). We also need to ensure that () N

the P;’s property saying that they are factors@fstill holds. Q(z, P(z)) = @Y (x — i,z P"(z — 7))

Here is a smart wheeze to deal with this resriction: At last, this expression shows that, if there is no coefficien
A ponno_m|aI P; being part of the solution has to be a roog, QU of total degree less that a value then z" divides

of ). This means that for all thé’;’s part of the solution, Q) (z — zi,2P"(z — ;).

Q(z, Pj(z)) = 0. We need a trick to force this equality togy shifting back, we obtain that, under the same condition,
be true, even before the system of equations determining @e_ ;)" dividesQ(x, P(z)).

coefficients of@ is solved. That is why the following fact is Tps is from where the parameterand as a consequence, the
useful: whenever a polynomial divides another one, either t

: parametet, can both be computed.
degree of the former is smaller than the degree of the latter,

then the dividing polynomial is a factor of the other one; ofig algorithm

h) Parameters Setting:
requires two parameters of whom the

it is the opposite, then the divided polynomial equals Ze8ptimization is entangled.

Thus, we want to find a factor i)(z, P;(z)) of whom the
exponent could be increased while ensuring that it is still a
divider of Q(z, P;(z)).

g) Formal Description:
We first give a formal definition of a shifted polynomial:

Definition 9 (Shifted Polynomial)

Given a polynomial) such thatV(z,y) € F2, Q(z,y) =
> > ¢ijx'y’ and a point(a, 8) € F?, the shifted polyno-
mial @ (,,5) to the point(a, ) is written:

Qa,p)(z,y) = Qz + a,y + )

It provides the following relation between the coefficients
of @) and the coefficient§g,,3);,; resulting from the shift:

U y! 1 . .1 .
(Q(a,ﬁ))i,j = Z Z < Zz > ( ]] )Qi',j/al —igi =i (6)
205" 2]

The equation(6) is necessary to write the new linear system
S’ to be solved. But, first of all, we need to compute new
parameters to determine the precise expressionypfof
whom the coefficients); ; are the unknowns of the target
system.
In our case, the shifted polynomial to the point, y;) will
be writtenQ(?.

From this definition, we can deduce some equalities which
will allow us to get the algorithm working.
Given a polynomialP which would be part of the solution,
we define a new polynomid’ such that:

P'(x) = P(x + z;) — y; (7
Then, we observe thd®'(0) = 0 which means that there exists
a polynomialP"” such that:
P'(z) = xP"(x) (8)
On an other hand, it is true that:
Q(z, P(x)) = Q" (x — z;, P(z) — yy)
(By the shift definition)
= QW (x -z, P(x — m; + m:) — yi)

= Q" (x — i, P'(x — 1))
(Where P’ is defined in (7))

o The paraneter r:

Combining the informal and formal descriptions, we
found the factor of@Q)(x, P;(z)) of whom the exponent
can be increased until reaching the necessary degree
to force Q(z, P;(x)) being zero. The first parameter
provides the needed value of the exponent to achieve
this property. Knowing that the sought polynomials must
agree with at least of the n input points, there will be

at leastt factors (z — z;)" dividing Q(z, P;(x)) for a
given polynomialP;. Thus,rt¢ has to be strictly greater
than the degree if). Oncer is determined, one just has
to nullify, for all i € [1,...,n], all the Q(V’s coefficients

of total degree less than This will provide some new
equations in the linear system to be solved:

Vi,1 <1< n, Vji,j2 > 0 such thatj; + jo <r
) a1, ad1—i 6]"2 —Jj2 —

(l) _ jl jl
Q1o = Z Z ( ]1 ) < ]j
(By definition (6))

J12d1 52742
From now, we know, according tg how many equations
the new linear systen$’ consists in.S’ contains then
old equations provided by the first condition, and the new
ones,n for each of the possibility of positive integers
pairs (j1, j2) such thatj; +j» < r. The resulting number
of equations inS’ is:

r
n—l—nZi:n—l—n
i=1

r(r2+1) =n(< r-gl >+1) )

Now, we need to get some information from the setting
of the second parameter to continue the computations.
The paranmeter I:

Let ! be the degree of), i.e. (1,k) — wt — deg(Q) < I.

We saw above thatt has to be strictly greater than the
degree of@, i.e.rt > I.
Knowing that it is always better to minimize the param-

eters we can, we sétas follows:
rt —1 (10)

From [, we can determine the number of monomials in
@, and then the number of unknowns in the system (cf.



qo,0 q1,0 qi1,0
do,1 ql—k—1,1
qdo,2 qI—2k—1

Qo,|L]—1 Qg—1,[1]-1
o, L]

Fig. 2. Monomials inQ

figure[2). i) Algorithm Overview:
This figure leads to the following computation : Sudan and Guruswami's Algorithm (1999) [6]
figurel 1+§ (I ES NN (F2) Input: k, ¢, {(z, )}, wheret = n — e
P 2 2k
(12) Parameters and! setting:
This gives rise to the last inequality which has to hold s
to make the algorithm work, and so to find the explicit r=14 |2t g(;_:if)t —kn) |
expression of-. l=1rt—1
e Finally, r
Givenr,_we have to be sure of the existence of a solution Find Q : }-g — F, such that:
for the linear systen$’. Then, the numbers of unknowns
has to be greater than the number of equations which, (Lk) —wt — deg(Q) <1
thanks to expression®) and(11), is given by: { Vi, 1 <i < n, QW is a shift of Q to (xi,y;)
Q is not identically zero

2 2k

Then, this inequality is simplified to get an expression Factorization of() into polynomials of degree at moat
easier to solve:

n(<r+1>+1)<1+l(l+k)

r -|- 1 < I(1+2) 1) Output all the polynomials” such that:
" 2k - (y — P(2))|Q(z,y) and
—1) 1 f(z;) = y; for at leastt values ofi.
( r+1 ) L rt=Dri+1) (rt rt—l— (rt=1)(rt+1) (from (10))
!

( s ;' k j) Algorithm Gains:

N Whereas the previous algorithm could not deal with RS codes
n(r® +r) < Q whose parameters would lead t > 1, the algorithm

k

) - presented in[J6] can solve the problem and output the correct
(r* +r)kn <r°t* -1 solutions list within a polynomial running time as long as th
0<r*(t? —kn) —t —rkn upper bound on the number of errors is satisfied, as shown in

Then, we solve the following second degree equation t[fg)e following theorems from the article:
get the minimum value for:

r?(t* —kn) —knr —1=0 Theorem 2 The algorithm of [[6] on imputss, &, ¢ and the
We keep the greatest of the two solutions to ensuR®ints{(z:, yi) : 1 <i < n}, correctly solves the polynomial
correctness: reconstruction problem providetl> v'kn
_kn+\/k?n? + 4(t> — kn)
= 2 — Fn)

) ) Theorem 3 For a given family of GRS codes of constant rate

Finally,  is set as follows: k=%, an error-rate ofe= £ =1—/k (i.e. e < n — Vkn)

kn + /k2n2 + 4(t2 — kn) can be list-decoded in tim@(n'%). Whene < 1 — \/k, then
2(t2 — kn) J the decoding time reduces @(n?)

r=1+4]

Now, the method is fully explained and parameters set, the
algorithm can be processed as shown below: (The proofs are omitted here since they are clear in the paper



V. DEALING WITH INSERTIONS V1. CONCLUSION
A. [6] for Insertions and Deletions Problem ? The comprehension of the algorithm of M. Sudan and V.

One question to be answered was whether the algorithm ggdruswami is definitely essential to be able to use it in
scribed in [6] could be adapted to list decoding of GRS codée resolution of other problems. Indeed, since each single
in cases of insertions and/or deletions. It finally appehas t Parameter has a precise and crucial role, it is important to
this adaptation could not happen because the input "shapédderstand each of them to be sure that a new problem is
would be very different: In the case of simple errors, theumpre_dumble_ to the polynomial reconstruction problem solired
contains a list of point$z;, y;) among whom it is known that th|s_ algorithm. Furthermore, even an appa_rently close_l_pmb
¢ are correct. as it can be thought for the reconstruction in cases of ilogert
In the case of deletions and insertions, the input will conta@nd deletions, appears to be totally different. Howeves th
a set of possible;’s for eachy;. Furthermore, whereas thoselgorithm takes advantage from some clever mathematical
sets are surely containing the actual correct value:ofor ~Properties which look universal, and then, it is expectald
eachy; in the case of insertions, this is not sure anymore 1€ c_o_uld use this technic to solve or improve some questions
cases of deletions occurring. remaining unanswered. o _ _

These observations lead to think that the algorithm desdrib©®n another hand, dealing with insertions and deletions ap-
in this report could not be modified efficiently to solve thigéared far more difficult than expected, and the solution
new problem. given in [6] is apparently not the track to be followed. The
Once this fact is stated, it appears that a few analysis migPPabilistic way might be gainful but it requires an effoft
answer some questions. Thus, in the next part will be codeymalization and a precise problem stating to give a strong
puted the size of the list which would have to be output bfjame to this exploration.

a list decoding algorithm in case of insertions present & th
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Finally, for a fixedn, an evaluation of the list size for a given
r will be denoted|L|,. and it appears that this is bounded by
a polynomial inn:

L[, = O(n")

Then, it is always possible to process a brute force algaorith
which would check all the possible solutions in polynomial
time, however, this polynomial could be large.

C. Open Problem: Deletions

Adding the possibility of deletions occurrences is a hard
problem since at one position of the string, the symbol could
be either still present in the received word, or have been
deleted. Then, trying to solve the problem in a brute force
manner is no longer efficient because the set of possililitie
for one symbol in the codeword we are looking for is actually
the whole alphabet.

From this, it appears obvious that the deterministic way wil
not provide a good algorithm. A probabilistic algorithm rinig
give good results, but then, we are not fully sure that thewatut
list always contains the sought codeword.
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