
Perfect Sampling of Load Sharing Policies in
Large Scale Distributed Systems

Gaël Gorgo
LIG - INRIA-Grenoble

MESCAL Project
51, avenue Jean Kuntzmann

38330 Montbonnot, FRANCE
Gael.Gorgo@imag.fr

Jean-Marc Vincent
LIG - INRIA-Grenoble

MESCAL Project
51, avenue Jean Kuntzmann

38330 Montbonnot, FRANCE
Jean-Marc.Vincent@imag.fr

Abstract—In high performance computers, load shar-
ing is essential to improve the efficiency of distributed
computations. This paper provides a performance eval-
uation of load sharing policies, based on a queueing
network model. Such models usually lead to Markov
chains with a very large state space and an exact solution
is extremely difficult to obtain. An efficient simulation
method, derived from Propp & Wilson, perfect sampling,
enables to sample states of the Markov chain according
to the stationary distribution. Thus, the performances
of load sharing systems, are estimated by an unbiaised
sampling of their steady-states.

When the events of the system are monotone, the
monotone perfect sampling algorithm is used to reduce
drastically the sampling time. A general index based
model for the definition of load sharing policies is
proposed and proved to be monotone. Then, large scale
distributed systems, i.e. with thousands of processors,
could be analyzed keeping a reasonable sampling time.

Index Terms—Load sharing systems, load sharing poli-
cies, performance evaluation, markovian systems, perfect
sampling, monotone models

I. INTRODUCTION

Load sharing algorithms are used to improve the
performances of distributed systems, dividing up the
workload among several processors. The load sharing
policy should ensure that, the average idle time of
ressources is minimized.

With the Work Sharing paradigm, load transfers
are initiated when a node is overloaded and try to
send some of its tasks to an under-loaded node. With
the Work Stealing paradigm, the under-loaded nodes
take the initiative: they attempt to steal tasks from
overloaded nodes. Work stealing is nowadays the most
used paradigm because of the intuition that transfers
occurs only when necessary (when every nodes are
busy, no transfer is done).

For many years, the proliferation of experimental
distributed infrastructures have given rise to imple-
mentations of load sharing algorithms on real systems
[3], [2], [7]. Experiments on these infrastructures give
concrete results on the performances of distributed
computations. However, the difficulty to measure the
system state during its execution and the overhead due
to a lots of phenomenons make that the analysis is
difficult.

Performance evaluation of load sharing systems with
theoretical tools is a hard problem since the state space

of such systems is very large. Usually, analytical meth-
ods have a very high complexity even for relatively
small systems. Previous works have predominantly
used queueing theory, representing the evolution of
the system by a Markov chain, and focus on the
performances of the system when it has reached its
steady-state.

Assuming some regular properties on the load shar-
ing model, Maryse Beguin [8] obtains the exact re-
sponse time and saturation probability of a large system
with analytical methods. However, when the system is
more complex, the solution can be obtained only for
very small models, such as a two processors system.

To solve complex systems in large scale, approxima-
tion techniques are used by [9], [12], [6], [5]. Based
on the decomposition of Markov chains and matrix
geometric solutions, these methods enable to model
various behaviours : delays induced by transfers of
tasks ([9]), cache affinity in shared memory multi-
processors systems ([12]), hierarchical load sharing
([4]).

Mean field heuristic capture the limiting behaviour
of dynamic markovian models as the number of objects
grows to infinity, representing their behaviour by dif-
ferential equations. A general approach of this method
can be found in [1]. Maryse Beguin [8] uses the mean
field method to study an extended spins model derived
from physic which represents a load balancing model.
Mitzenmacher [10] analyses load stealing models with
a mean field approach. The advantage is the ability to
model a large variety of behaviours, such as delays
of transfer, heterogeneous systems, threshold decision.
The drawback is the difficulty to prove that differential
equations really converge to a fixed point. Moreover,
the method doesn’t provide accurate results when the
number of objects is small.

In all of those works, simulations are used to vali-
date the results. Simulations estimate the steady-state
distribution based on long run of the Markov process.
The drawback of simulation is the control of the warm
up period, which depends on the size of the state space
and the initial state.

In this paper, we use a perfect sampling algorithm,
derived from Propp & Wilson [11] and implemented
in Ψ2 [15], a software dedicated to the simulation
of finite size queueing networks. A simulation with

Ψ2 provides a sample in which states are generated
according to the stationary distribution of the markov
process. We model a distributed architecture by a finite
size queueing network on which task creations, task
completions and transfers of tasks between queues are
events.

The aim of this paper is to show the efficiency of
discrete events simulation based on perfect sampling
techniques for dimensioning load sharing policies in
large scale distributed systems.

In particular, the objective is to define a scope
of monotone events such as monotonicity techniques
could be used to reduce the sampling time of perfect
sampling.

The difficulty is to provide a method which is as
efficient on small systems (about 10 processors) as on
large scale systems (thousands of processors).

II. LOAD SHARING SYSTEM MODELLING

A. Model Architecture

In this section, we describe the architecture of the
load sharing systems that we model in the following.
Such systems are composed of several nodes which
run at, the same time, the same algorithm.

CPU

Controller

Queue

Network

Fig. 1. Architecture of a node

A representation of a node is given in figure 1. A
node has basically one activity which is the computa-
tion of tasks. The tasks that arrive at the node (tasks
created by the node itself or tasks coming from other
nodes) are stored in a queue. While the queue is not
empty, tasks are carried out in sequence using a local
sheduling policy.

To share the global workload among nodes, a control
is performed on each node. A load sharing operation
is typically the transfer of a task from a node to
another node and is function of the decision of the local
controller. The decision process is based on the local
observation of the workload of the node. The controller
then decides if the node is under-loaded, overloaded
or in normal load. In the case where the load is not
normal, the controller should find a target node for
stealing a task or transfering a local task. When the
operation is the stealing of a remote task, the system
uses the work stealing paradigm, also called pull in
this paper. When the controller transfers of a local task,
the system uses the work sharing paradigm, also called
push in this paper.

Decisions times of the controller could be driven by
events (begining or completion of a task, arrival of a
new task) or defined by internal timers which could be
periodic for example.

In the execution, we suppose the control times neg-
ligeable, comparing with computation times of tasks.
We also suppose that the transfer times are neglected
(high speed network).

B. Events Modelling

We model a load sharing infrastructure by a queue-
ing network with K queues, where a queue is the
abstraction of a node. The state space of each queue
Qi is the set of integers Xi = {0, . . . , Ci}, where Ci is
the capacity of queue Qi. The state Xi of a queue Qi,
Xi ∈ Xi, correspond to the number of tasks waiting
in the queue and is called the load of Qi. The state
space X of the system is the Cartesian product of all
Xi; X = X1 × · · · × XK .

All the queues are in parallel, as represented in
Figure 2. This implies that a task will never be com-
puted more than one time. However, a task could be
moved several times between queues until begining its
computation.

C1

CK

C2

Fig. 2. Parallel Queueing Network

The system is characterized by a set of events E
and a transition function Φ, defined on X × E , which
associates to each state x in X and each event e in
E , a new state Φ(x, e). In our distributed load sharing
system, each queue Qi is typically characterized by a
set of 3 events {ai, di, ci}. The event ai is a task arrival
at Qi, increasing xi by one. The event di corresponds
to a task completion at Qi, meaning that the server
has carried out a task and made decreased the load
xi by one. The event ci is a control at queue Qi,
modelling an attempt of the controler to transfer a task.
The application of the event ci on a state x corresponds
to the transfer of a task from a queue Qk to another
queue Qk′ (k, k′ ∈ {1, . . . ,K}) 1. Then the load xk

decreases by one while the load xk
′

increases by one.
The event ci model the entire load sharing policy of
the system and could be very complex. Details will be
given in section II-C.

One could note that when we model a system
wherein control times are driven by events (task arrival,
task completion), control events should be applied at
each time an arrival or completion event happens. To
model those systems, the happening event (arrival or
completion) and the control event are merged in only
one event. This event performs the operations of both
the happening event and the control event.

Notice that the triggering of an event depends on the
state of the system. For example, the event completion

1Usually the controller evaluate the local load and, depending on
the policy, transfer a local task (k = i) or export a remote task
(k′ = i)

can be executed only if the number of tasks in the
queue is greater or equal to one. We consider that
applying a completion event to an empty queue leaves
the global state unchanged and more generally if an
event cannot be applied, the corresponding transition
is just a skip operation.

Example: We consider a small work sharing system.
We model this system by two queues Q1 and Q2 both
of capacity C = 2. The state space X of the system is
the cartesian product {0, 1, 2}× {0, 1, 2} and the state
of the system will be noted (x1, x2) or shortly x1x2. A
representation of the system is given in figure 3. The
dynamic of the system works as follow :

Overflow

Controler

Overflow

λ2

λ1

µ1

µ2

Controler

Fig. 3. Simple push queueing system

If the number of tasks in a queue Q is 0, then we
say that Q is under-loaded. If there is one task, Q is
normally loaded and finally, Q is said to be overloaded
if its load is 2.

On a task arrival at Q1, the Q1 controller decide
where the task should be allocated in function of the
system state :

• if Q1 is under-loaded, the task is allocated to Q1.
• if Q1 is normally loaded or overloaded while Q2

is under-loaded, the task is transfered to Q2.
• if Q1 is overloaded and Q2 is not under-loaded,

the system get an overflow and the task is lost.
• In any other cases, the task is allocated to Q1.

On a task arrival at Q2, the Q2 controler have the
symetric behaviour of Q1.

We model those mechanisms by the set of events
E = {a1, a2, d1, d2}. The event a1 (resp. a2) corre-
sponds to a task arrival at Q1 (resp. Q2) and the event
d1 (resp. d2) corresponds to a task completion at Q1

(resp. Q2), meaning that the task has been carried
out. One could note that, in this example, control
events are merged with arrival events. Let Φ be the
transition function of the system, we give in Figure 4,
for each event e, the definition of Φ(x, e) for all x ∈ X
according to the dynamics defined above.

22

21

20

12

11

10

02

01

00

22

21

20

12

11

10

02

01

00

22

21

20

12

11

10

02

01

00

22

21

20

12

11

10

02

01

00

22

21

20

12

11

10

02

01

00

22

21

20

12

11

10

02

01

00

22

21

20

12

11

10

02

01

00

22

21

20

12

11

10

02

01

00

Φ(x, a1) Φ(x, a2) Φ(x, d1) Φ(x, d2)

Fig. 4. Transition function of the system

C. Modelling load transfer events

In this section, we give a general scope for the
definition of load sharing policies. It deals with the
definition of transfers of load between queues. A
transfer consists in moving a task from an origin queue
to a target queue. The load sharing policy determines
the choice of the origin queue and the target queue. A
transfer is triggered, on a queue Qi, by a local control
event ci. When the task is transfered from Qi (the
queue where the control event ci occured), the policy
uses the paradigm push. When the task is imported on
Qi, the policy is called pull or work stealing.

Consider a control event e, the choice of origin and
target is performed by priority functions called index.
An introduction to index functions can be found in
[14]. We consider origin index functions that associates
to each queue Qi an index Ie,oi (xi), then the origin
queue is oe = argmaxi(I

e,o
i (xi)). In the same manner,

we consider target index functions that associate to
each queue Qi an index Ie,ti (xi), then the target queue
is te = argmini(I

e,t
i (xi)). The transition function

associated to the event e is then defined by :

Φ(x, e) =

{
x if oe = te

x− 11oe
+ 11te else

Modelling a distributed load sharing system, we
associate to each queue Qi a control event ci and the
corresponding index functions.

A first Join the Shortest Queue load sharing

The classical Join the Shortest Queue policy is
extended to a load sharing policy :

when a control event ci happens on Qi, a task is
transfered from Qi to the less loaded queue of the
system. For this policy, index are defined by :

Ici,o
j (xj) =

{
+∞ if j = i

−∞ else

Ici,t
j (xj) = xj for all j ∈ {1, . . . ,K}

Notice that the origin index functions are made such
that we will always have o = i, meaning that the type
of policy is push. Note that if Qi is the less loaded
queue, we have t = i, meaning that the target of the
transfer is Qi itself. In this case, the state is unchanged.

Threshold load sharing

The same JSQ load sharing policy is applied, but
adding some threshold conditions.

If a potential target is under-loaded, i.e if its load
is lower or equal to a low threshold θl, a transfer is
possible on this queue. Then the less loaded queue is
choosen among the targets that assert this condition.
The Origin index family is the same as before. Target
index are defined by :

Ici,t
j (xj) =

{
xj if xj 6 θl

+∞ else
∀j ∈ {1, . . . ,K}, j 6= i

Ici,t
i (xi) = xi

The transfer of a task could be also conditionned by
the state of the origin queue Qi. We want a transfer
to be done only if Qi is overloaded, i.e if its load is
greater or equal to a high threshold θh. Then, we have
:

Ici,t
i (xi) =

{
−∞ if xi > θh

+∞ else

In this last example, the index function Ici,t
i (xi)

model the decision process of the queue Qi which
tell if an attempt of transfer must be done or
not. In fact, when Ici,t

i (xi) = −∞, we have
tci

= argmink(Ici,t
k (xk)) = i and no transfer is

done. When Ici,t
i (xi) = +∞, a task is transfered

to a target queue Qj if there exists at least one
j ∈ {1, . . . ,K}, j 6= i such as Ici,t

j (xj) 6= +∞.

A work stealing system

With the work stealing paradigm, when a queue
reachs an under-loaded state, it steals a task on another
queue selected according to a priority rule among other
queues. If this queue is not able to provide some work,
another attempt is made on another queue in the same
manner and so on, until a suitable queue is found.

Definition 1. A priority function γ is an application
which associates to each queue Qi, i in {1, . . . ,K}, a
priority level γ(i) which takes values in N. We consider
that a queue Qk have the priority on an other queue
Qk′ if γ(k) < γ(k′).

To avoid ambiguity, we suppose that priorities have
different values, that is ∀i, j γ(i) 6= γ(j) (so the argmin
is uniquely defined).

Given a threshold θ, a queue is under-loaded if its
load is lower than θ, overloaded if its load is greater
than θ and in normal load if its load is equal to θ. Given
a priority function γ and considering the control event
ci on Qi, we model a work stealing policy by the index
functions :

Ici,t
j (xj) =

{
−∞ if j = i

+∞ else

Ici,o
i (xi) =

{
+∞ if xi > θ

−∞ else

Ici,o
j (xj) =

{
−∞ if xj 6 θ

γ(j) else
∀j ∈ {1, . . . ,K}, j 6= i

At the opposite of the first example where the origin
index functions are made such as the origin is always
Qi, we describe here a pull policy with target index
functions that made Qi always be the target.

D. System Dynamics

To explain the evolution of the system over the time,
markovian assumptions are made in the modelling
of task arrivals, task computations and load sharing
controls. A Poisson process with rate λi is associated
to each event ei of the system. Those Poisson processes
are supposed to be independent.

To simulate the Markov chain, we build a discrete
time stochastic recurrence equation. To transform the
continuous time model in a discrete model, we uni-
formized the process, which is then driven by the
Poisson process with rate Λ =

∑p
i=1 λi and generates

at each time an event e ∈ E according to the probability
distribution (λ1

Λ , . . . ,
λp

Λ). The uniformized process is
proved to be equivalent to the initial queueing network
Markov process in [13].

Let Xn be the nth observed state of the system and
{En}n∈Z a random sequence of events, the system
evolution is described by the equation :

Xn+1 = Φ(Xn, En+1) (1)

Definition 2. An execution of the system is defined
by an initial state x0 ∈ X and a sequence of events
{en}n∈N. The sequence of states {xn}n∈N defined by
the recurrence xn+1 = Φ(xn, en+1) for n 6 0 is
called a trajectory.

The aim of discrete events modelling is to find an
efficient method for the estimation of the stationary
distribution of the Markov process. Section III shows
that perfect sampling is based on this representation of
the queueing network markovian model.

III. PERFECT SAMPLING

Simulation of Markov chains is a method to estimate
the stationary distribution, when it is hard to solve
it with analytical methods (state space explosion).
According to Markov theory, under mild assumptions,
an execution of the Markov chain starting from any
initial state converges to the stationary distribution. The
forward simulation then consists in running the chain
from an initial state and stops after a sufficiently long
defined time, called warm up period or burn-in time,
such that the outputted state follows the stationary
distribution. Sampling several states with this method,
the stationary distribution characteristics are computed
by a statistical estimation. However, there are sampling
errors if the the burn-in time is not sufficiently long.
Moreover, the forward simulation method doesn’t en-
able to control this error.

The algorithm developped by by Propp & Wilson
[11] allows to sample a state which follows exactly the
stationary distribution. The idea is to use a backward
coupling scheme, also called coupling from the past.
Details are given in the following. Then the same
methodology of large sampling and statistical estima-
tion is employed to compute the result.

A. Backward coupling

Algorithm 1 Backward set-simulation of a Markov
chain
Require:

Φ a transition function
{en}n60 a backward independent events process

1: n ← 0
2: repeat
3: {Start from the past at time −n}
4: Z ← X
5: for i = −n+ 1 downto 0 do
6: Z ← Φ(Z, ei);
7: end for
8: {Z = Φn(X , e−n+1→0) the set of all possible

states at time 0 knowing the innovation process
downto −n}

9: n = n+ 1
10: until |Z| = 1
11: return Z {Z is reduced to 1 state}

Definition 3 (Global coupling time).
The stochastic recursive system is globally coupling if
τ

∆= argminn{|Φn(X , e1→n)| = 1}; is almost surely
finite. τ is the global coupling time of the SRS.

When the set of events is discrete, then the global
coupling time property is directly concerned with syn-
chronizing patterns :

Proposition 1 (Global coupling property).
The system is globally coupling if and only if there is
a finite sequence of events y (a synchronizing pattern)
es1, · · · , esl such that

|Φn(X , es1→n)| = 1.

Theorem 1 (Steady-state sampling).
Provided the stochastic recursive system is globally
coupling, the state generated by Algorithm 1 is sta-
tionary distributed.

To illustrate the backward coupling method, we give
an example. We consider the small system introduced
in section II (Figure 3). The arrivals rates and the
completions rates are fixed such as λ1 = λ2 = 0.6
and µ1 = µ2 = 1. Then, the uniformized system is
driven by the Poisson process with rate Λ = λ1 +
λ2 + µ1 + µ2 = 3.2 and generates at each time
of the process en event e ∈ {a1, a2, d1, d2} accord-
ing to the probability distribution (λ1

Λ ,
λ2
Λ ,

µ1
Λ ,

µ2
Λ) =

(0.1875, 0.1875, 0.3125, 0.3125) = p.
In figure 5, we give an example of a backward

coupling, generating at each time step an event which
follows the probability distribution p. The principle is
to go back at a time −τ sufficiently far in the past in
such a way that the trajectories issued from all states
at time −τ couple in one state before time 0. If this
last assertion is verified, the state at time 0 follows the
stationary distribution of the system. We can see that,
in our example, taking τ = 14 is sufficient because all
the trajectories couple in state 01.

−16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 Time

States

0

00

01

02

10

11

12

22

21

20

d1 a1 a2 d2 d1 d2 d2 a2 d1 a1 d2 d1 a2 d2 a2 d1

Fig. 5. Backward coupling starting from −14

This simple example shows how the backward cou-
pling method works. At each step going back in the
past from a time −n to time −(n+1), some trajectories
are “lost”. A trajectory is “lost” if it is issued from a
state at time −n which is not reached by any transition
from time −(n + 1). As a consequence, when all the
trajectories starting at time −n and ending in state x
at time 0 are lost, the state x become unreachable and
the size of the coupling set, i.e the set containing the
final coupling state, decreases. On our example, the
states {22, 21, 20} are unreachable since the time −1,
the states {10, 00} since time −2, and so on until the
state 01 become the only reachable state.

Let’s discuss now about how many steps are needed
to obtain this scheme. Denote by τ∗ the minimum
number of time steps that enable coupling, called the
coupling time. On this example, we have τ∗ = 11 and
we show the obtained scheme, starting from time −τ∗
in figure 6.

−16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 Time

States

0

00

01

02

10

11

12

22

21

20

d2 d2 a2 d1 a1 d2 d1 a2 d2 a2 d1

Fig. 6. Backward coupling starting from −τ∗

We can see that, in the backward scheme starting
at −14 (Figure 5), all the trajectories coupled since
time −7, while in the one starting at −11 (Figure
6), the coupling isn’t done before 0. Starting at any
further time in the past may probably shift this cou-
pling moment in the past again. However, running the
process from any time −τ with τ > τ∗ will not change
the output of this backward coupling scheme, because
all the trajectories starting from time −τ∗ end in the
coupling state 01 at time 0.

B. Monotone perfect sampling

When a system is monotone, an interesting phe-
nomenon happens to the backward coupling scheme :
trajectories issued from a maximum and a minimum
state of the system surround the trajectories issued
from all others states. This property enables to get
reasonable computation time for Perfect Simulation
algorithms, drawing only two trajectories rather than
as many as the size of the state space. This technique,
which has been introduced in [11], is explained pre-
cisely in algorithm 2.

Algorithm 2 Backward monotone set-simulation of a
Markov chain
Require:

Φ a monotone transition function
{ξn}n60 a backward innovation process
M the set of extremal elements of X

1: n ← 0
2: repeat
3: {Start from the past at time −2n + 1}
4: Z ← M
5: for i = −2n + 1 downto 0 do
6: Z ← Φ(Z, ξi);
7: end for
8: {Z = Φn(X , ξ−2n+1→0) the bounding set of all

possible states at time 0 knowing the innovation
process downto −2n}

9: n = n+ 1
10: until |Z| = 1
11: return Z {Z is reduced to 1 state}

Example: we show how this phenomenon holds in
the simple system of Figure 3. The first stape is to
show that our system is monotone.

We consider a lattice order on X which is repre-
sented as a Hasse diagram in figure 7. It is a partial
order using component-wise ordering, meaning that,
given two states x, y ∈ X , we have x � y if x1 6 y1

and x2 6 y2.

01

21 12

10

20 11 02

00

22

Fig. 7. Hasse diagram associated to the model of Figure 3

Definition 4. An event e ∈ E is said to be monotone if
it preserves the partial ordering (component-wise) on
X . That is

∀(x, y) ∈ X x � y ⇒ Φ(x, e) � Φ(y, e)

If all events are monotone, the global system is said
to be monotone.

Using the representation of the transistion function
of the system in figure 4, we can easily see that this
one is monotone. We just have to check that there are
not non monotone cases. A non monotone case could
be seen like two transition arrows crossing each other,
implying that the order hasn’t been preserved after the
application of the transition function. However, as we
use a partial order, if the transition arrows are issued
from two not comparable states, it doesn’t matter.
For example, the cross drawn by transition arrows
Φ(02, a2) and Φ(10, a2) is not a non monotone case

because 02 and 10 are not comparable. We could check
that all other ”cross” of Φ are similar to this last case
and thus, the partial order is always preserved by Φ.

A monotone backward coupling scheme is repre-
sented in Figure 8. Trajectories issued from the max-
imum state 22 and the minimum state 00 are drawn
starting at time −1,−2,−4,−8 and −16, following
a doubling period scheme. Coupling is observed with
τ = 16 and the outputted state is 01, like in the
backward coupling of Figure 6 and 5 (Of course, the
same random sequence of events is used until time
−11).

−16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 Time

States

0

00

01

02

10

11

12

22

21

20

d1 a1 a2 d2 d1 d2 d2 a2 d1 a1 d2 d1 a2 d2 a2 d1

Fig. 8. Monotone backward coupling

IV. MONOTONICITY OF LOAD SHARING
SYSTEMS

Under monotonicity assumptions, perfect sampling
is an efficient method to simulate systems with large
state spaces. Modeling a system with events, we know
that a system is monotone if all the events are mono-
tone. In queueing network models with finite size
queues, a large scope of events are monotone, like the
simple arrivals and end of service events for example.
However, the modelling of a new class of systems
could lead up to non monotone models. In this section,
we show that the control events introduced in section
II-C are monotone events. As we model those events
with general index functions, this result implies that a
large class of load sharing systems could be simulated
with monotone perfect sampling.

A. Monotonicity of index model

We consider a control event e defined by :

Φ(x, e) =

{
x if xi = 0
x− 11i + 11j else

where i = argmaxKk=1(Ie,ok (xk)) (the origin of the
transfer) and j = argminKk=1(Ie,tk (xk)) (the target of
the transfer)

Proposition 2. if all index functions Ie,ok and Ie,tk are
monotone and increasing, then the event e is monotone

Proof: Let x � y two states and let e be a control
event. Let ix and jx (resp. iy and jy) be the origin
queue and the target queue for state x (resp. for state
y)

ix = argmaxKk=1(Ie,ok (xk))

jx = argminKk=1(Ie,tk (xk))

iy = argmaxKk=1(Ie,ok (yk))

jy = argminKk=1(Ie,tk (yk))

The proof follows this scheme : we consider
separately the process of extraction which consists in
removing a task on the origin queue and the process
of allocation which consists in placing the extracted
task on the target queue. We show that those two
processes are monotone. Then, the combination of
extraction and allocation is also monotone.

Extraction
• If ix = iy = i then x− 11i � y − 11i

Considering the bound case, we have :

[x− 11i]
+ � [y − 11i]

+

• If ix 6= iy
Ie,oiy (xiy) < Ie,oix (xix) 6 Ie,oix (yix) < Ie,oiy (yiy)
then xiy < yiy ⇒ xiy 6 yiy − 1 ⇒ x � y −
11iy ⇒ x− 11ix � y − 11iy
Considering the bound case, we have :

[x− 11ix]+ � [y − 11iy]+

Allocation
Denote by

−→
C the capacity vector {C1, . . . , CK} of

the system.
• If jx = jy = j then x+ 11j � y + 11j

Considering the bound case, we have :

(x+ 11j) ∧
−→
C � (y + 11j) ∧

−→
C

• If jx 6= jy
Ie,tjx (xjx) < Ie,tjy (xjy) 6 Ie,tjy (yjy) < Ie,tjx (yjx)
then xjx < yjx ⇒ xjx + 1 6 yjx ⇒ x + 11jx �
y ⇒ x+ 11jx � y + 11jy
Considering the bound case, we have :

(x+ 11jx) ∧
−→
C � (y + 11jy) ∧

−→
C

V. APPLICATIONS

In this section, the results obtained by monotone
perfect sampling, using the Ψ2 software ([15]) are dis-
cussed. All the simulation experiments were executed
on a PC architecture with a Pentium 4, 2.8 GHz, 1Go
RAM, Linux kernel 2.6.28-11-generic and the compiler
gcc version 4.3.3. Simulation time estimations were
obtained by using the gettimeofday primitive.

A. Policies comparison

We study load sharing policies on a small parallel
architecture, composed of 8 nodes. Our aim is to
compare the performances of the paradigms push
and pull, when the control times, on each node, are
driven by internal timers. We say, in this case, that the
controller is independent from the computation. With
both of those two paradigms, a transfer could be done
from a sender node to a receiver node if the sender’s
load is greater than a threshold θ and the receiver’s
load is lower than θ. When the controller decides to
transfer a local task or steal a remote task, it probes
a randomly chosen node to know if a transfer is

possible. If not, another node is probed in the same
manner and so on, until a suitable place is found or
the number of attempts reachs a static prob-limit l.

We apply the model of the section II on this sys-
tem. The arrivals rate of tasks λ, the services rate
µ and the controls rate ν are homogeneous on each
queue. To model the policy described above, index
are characterized by priority functions, like in the last
example of section II-C. To model the random probing,
the control event of a queue is divided in m control
sub-events such that the rate of each sub-event is ν

m .
Each sub-event is characterized by a different priority
function. Each priority function is defined according to
a possible ordered combination of l queue among K,
as a priority list. Thus, we have that m = K!

(K−l)! . Then,
the random nature of the Markov process induces that
this technique simulates a random probing.

As default setting, We take µ = 1, ν = 1 and we
choose θ = 1 for the decision threshold, that is, a
queue is under-loaded if it is empty, in normal load if
there is one task and overloaded if there are at least
two tasks.

Statistical Estimation: The estimation of the mean
response time of a task r, for a given arrival rate λ,
is obtained by the computation of the mean load of
the system l and the application of the Little formula:
r = l

K∗λ . The sample size for the calculation of the
mean load is n = 1000. As all samples are mutually
independent, we apply the central limit theorem
to compute confidence intervals at a level α. With
α = 95%, the estimation error is lower than 10−1.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
sp

o
n

se
 t

im
e

arrivals rate

Independent Pull
Independent Push

Push on arrival

Fig. 9. Comparison of push and pull paradigms

Figure 9 shows the evolution of the response time of
a task in function of the arrivals rate of tasks λ, for the
policies push and pull with an independent controller
and the policy push with a controller driven by arrivals.

Looking at the independent controller case, the tasks
have a lower response time with the push paradigm
than with the pull paradigm when the load is greater
than 70%. Eager et al [6] finds that, at the opposite,
pull is better than push at high load.

To analyze this contradiction, we use the following
statement : ”When the system is in a state such as
one transfer could be done (unbalanced state), i.e there
is at least one under-loaded node and at least one
overloaded node, then performances are improved if

the policy realizes this transfer before some other
events (arrivals, completions) change the state such as
there is no possible transfer (balanced state). In the
other case, we say the policy failed a transfer”. Then,
the best policy would have the lowest probability to
fail the transfer.

Consider that the system is running for a long time
with a load greater than 70% and has just reached an
unbalanced state, i.e. there is at least one queue of
which load is equal to 0 and at least one queue of which
load is greater than 1. We analyze the probability of
each policy to perform a transfer in this situation. This
probability mainly depends on two factors which are
the probability that a control be triggered before the
system return to a balanced state and the probability
that, once a control is triggered, the controller finds
a suitable node for the transfer. With this model, the
controller has an extremely low probability to fail
because of the second factor. Thus, in this discussion,
we only consider the influence of the triggering.

In the case where controls are driven by events,
pull performs a transfer with probability 1 because a
control is systematically triggered on an under-loaded
queue which has reached its under-loaded state thanks
to a task computation. With push, a transfer is done
only if an arrival occurs on an overloaded node before
the system become balanced with other events. In
others words, depending on the following events, push
could fail the transfer, so the probalility is lower than
1. Thus, when controls are driven by events, pull is
intuitively better than push, this result is validated by
experimentations of [6].

In the case of an independent controller with a
control rate ν = 1, a transfer is done if a control is
triggered before any arrival occurs, leading up to a bal-
anced state. With a pull policy, the control event musts
be triggered on an under-loaded queue, while with a
push policy, it must be triggered on an overloaded
queue. As there are on average more overloaded queues
than under-loaded queues when the load is greater
than 70%, the probability that a control be triggered
is higher for push than for pull. It justifies the result
in Figure 9.

Figure 9 also shows that the policy push on arrival
is better than independent push and independent pull,
while the average number of controls is the same for
every policies, because ν = µ = 1.

The conclusion of this discussion is that control
times are a very influential parameter on the system
performances, in particular for heavy loaded systems.

B. Parameter estimation

In the definition of a load sharing policy, work
stealing and work sharing are fundamental paradigms
which completly change the behaviour of the system.
On the other hand, thresholds, prob-limit, number of
tasks to transfer, are parameters of the policy which
could be set with different values. Then, given a par-
ticular infrastructure and a type of application, the aim
is to estimate the optimal value of each parameter. In
this section, we estimate the performances of policies

with an independent controller, varying the controls
rate ν. The model of section V-A is also considered
here. We make this experiment for both push and pull
paradigms and look at the case where the load λ = 0.9.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6

re
sp

o
n

se
 t

im
e

controls rate

Independent push
Independent pull
Push on arrivals

Fig. 10. Estimation of the control rate

Figure 10 shows the evolution of the response time
when controls rate vary from 0 to 6. Even when the the
controls rate increases, pull is still less efficient than
push. However, pull outperforms the push on arrivals
policy when the controls rate is greater than 5. In the
same time, independent push is as good as push on
arrivals with a controls rate approximatelly equal to 2,
and the improvement obtained further is not significant.
Thus, a system build such as controls are independents,
will have to be set such as the controls rate be about
the double of the processor speed of a node.

C. Scaling up

The aim of this section is to show that perfect sam-
pling allows to compute the steady-state, even when the
input model is very large. In this study, we examine the
efficiency of the method, making experiments with Ψ2.
Then, the method is efficient if the program doesn’t
crash and the sampling time, i.e. the time needed to
generate one state by a backward coupling scheme,
stays reasonable.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 200 400 600 800 1000 1200

S
am

p
li

n
g
 t

im
e

(m
s)

system size

Fig. 11. Sampling time of the simulation

Figure 11 shows the evolution of the sampling time
when the size of the system increases from 4 nodes to
1024 nodes. With a system of 1024 nodes in input, the
sampling time is about 180 seconds, that is 3 minutes.
Consider that a sample size of 1000 is sufficient to
make the confidence intervals converge, then it will
take 50 hours to obtain the result. One could say that
it is relatively long to wait this time. However, it is
possible to generate several small samples on several
computers, and then merge them in one sample on
which the statistics could be done. To ensure the

quality of the sample, random generators and random
seeds of the computers have to be set correctly. Then,
the time needed to obtain the result will be divided by
the number of computers used. With five computers,
for examle, the result is obtained in ten hours, that is
one night.

As example, we study the performances of the in-
dependent push policy when the system size increases.
We take ν = 2 for the controls rate, λ = 0.9 for the
input load and l = 7 for the prob-limit.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600

re
sp

o
n
se

 t
im

e

system size

Fig. 12. Performance of independent pull in function of the system
size

Figure 12 shows the response time of the indepen-
dent push policy depending on the system size for
a prob-limit l = 7. We can see that the response
time reached an asymptotic bound as the number of
nodes goes to infinity. Consequently, this result is in
agreement with the mean field heuristic used in [1],
[8], [10].

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140

re
sp

o
n
se

 t
im

e

system size

l = 2
l = 7

l = 15

Fig. 13. Performance of independent pull depending on the prob
limit

In Figure 13, we compare the performances of the
independent push policy, setting the prob-limit with
values l = 2, 7 and 15. This experiment shows that
there is not a significant improvement taking l = 15
rather than l = 7. Consequently, in a system where
the probing operation induces a cost, and then a lost
in performances, it is interesting to estimate the value
which ensure the best compromise.

VI. CONCLUSION

This work presents a method for the performance
evaluation of load sharing systems, by the computation
of an unbiaised sampling. Monotonicity is the key of
efficiency, for the perfect sampling of models with
large state spaces. Then, a large scope of load sharing
policies could be described, with monotone index

based models. However, when the control is triggered
by task completions or when the number of transfered
tasks is greater than one, the monotonicity is broken.

The advantages of this method are to provide ac-
curate results and to be efficient with relatively large
models. Moreover, perfect sampling could be used to
estimate the error done by inaccurate methods such as
approximations or mean field heuristic.

REFERENCES

[1] M. Benaı̈m and J.Y. Le Boudec. A class of mean field
interaction models for computer and communication systems.
Perform. Eval., 65(11-12):823–838, 2008.

[2] R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded
computations by work stealing. J. ACM, 46(5):720–748, 1999.

[3] F.W. Burton and M.R. Sleep. Executing functional programs on
a virtual tree of processors. In FPCA ’81: Proceedings of the
1981 conference on Functional programming languages and
computer architecture, pages 187–194, New York, NY, USA,
1981. ACM.

[4] S.P. Dandamudi, M. Kwok, and C. Lo. A comparative study of
adaptive and hierarchical load sharing policies for distributed
systems, 1998.

[5] D.L. Eager, E.D. Lazowska, and J. Zahorjan. Adaptive load
sharing in homogeneous distributed systems. IEEE Trans.
Softw. Eng., 12(5):662–675, 1986.

[6] D.L. Eager, E.D. Lazowska, and J. Zahorjan. A comparison
of receiver-initiated and sender-initiated adaptive load sharing.
Perform. Eval., 6(1):53–68, 1986.

[7] R.H. Halstead. Implementation of multilisp: Lisp on a mul-
tiprocessor. In LFP ’84: Proceedings of the 1984 ACM
Symposium on LISP and functional programming, pages 9–17,
New York, NY, USA, 1984. ACM.

[8] B. Ycart M. Beguin, L. Gray and. The load transfer model.
The Annals of Applied Probability, 8(2):337–353, 1998.

[9] R. Mirchandaney, D. Towsley, and J.A. Stankovic. Adaptive
load sharing in heterogeneous distributed systems. J. Parallel
Distrib. Comput., 9(4):331–346, 1990.

[10] M. Mitzenmacher. Analyses of load stealing models based
on differential equations. In SPAA ’98: Proceedings of the
tenth annual ACM symposium on Parallel algorithms and
architectures, pages 212–221, New York, NY, USA, 1998.
ACM.

[11] J.G. Propp and D.B. Wilson. Exact sampling with coupled
markov chains and applications to statistical mechanics. Ran-
dom Struct. Algorithms, 9(1-2):223–252, 1996.

[12] M.S. Squillante and R.D. Nelson. Analysis of task migration
in shared-memory multiprocessor scheduling. SIGMETRICS
Perform. Eval. Rev., 19(1):143–155, 1991.

[13] J.M. Vincent. Perfect simulation of queueing networks with
blocking and rejection. In SAINT-W ’05: Proceedings of the
2005 Symposium on Applications and the Internet Workshops,
pages 268–271, Washington, DC, USA, 2005. IEEE Computer
Society.

[14] J.M. Vincent and J. Vienne. Perfect simulation of index based
routing queueing networks. SIGMETRICS Perform. Eval. Rev.,
34(2):24–25, 2006.

[15] J.M. Vincent and J. Vienne. Psi2 a software tool for the perfect
simulation of finite queueing networks. In QEST, Edinburgh,
sep 2007.

