
Clustering of Document Streams
Xerox XRCE Internship

Cedric Lagnier
Eric Gaussier (LIG), Jean-michel Renders (Xerox)

Abstract—With Internet, the number of data published every
day increases more and more and a single person is not able
to read all documents that are generated. That’s why we need
clustering algorithms to help us read new documents. In this
document, we present the adaptation of some clustering methods
(K-means, PLSA, Hierarchical clustering) on document streams.
Each method has been developped in order to solve problems of
previous methods.

Index Terms—Machine learning, Clustering, Documents
stream.

I. INTRODUCTION

In order to deal with the number of new documents every
day, we need clustering algorithms: it is easiest to read 100
topics and choose which documents we want to read instead
of 1000 documents in a pool. Here, I took an interest in
text data streams: a timestamp is assigned to each document
which allows us to use a temporal dimension in the clustering.

There are a lot of different text streams: the main streams
are news and mails. I will here focus on news, because it is
easier to manually detect and understand events, however I
have no pre-categorized corpus which I can use to evaluate
my algorithms.
The main levels of the hierarchy we can have in the document
clustering are:

∙ A category is the first distinction made between articles,
it defines the domain of the news. For example, Sports,
Politics or Business are categories.

∙ A topic is a distinction in the category. For example, in
Sports we can talk about Tennis, Football, ... in Politics
we can talk about elections, inner policy, ...

∙ A story is related to a fact which happened. It is char-
acterized by an event succession. For example, Roland
Garros 2009 or US presidential elections of 2004 are
stories.

∙ An event is the smallest class. It represents a single fact,
at a precise time. The defeat of Nadal at Roland Garros
2009 or a krack in Wall Street are events.

In this article, my goal is to group all documents in events.
We will see later that only 2 or 3 documents often talk about
a same event. Only big events like a tsunami, an election, a
world event, ... are defined by a lot of documents.

I will have a look at the main clustering methods and
try to adapt them adding the temporal dimension. The main
idea in clustering is to find similarity between mathematic

representation of elements. An element representation could be
a vector, a graph or something else. In document clustering,
we represent a document as a vector of words. Values
could be binary (presence/absence) or numeric (number of
occurrences). A similarity or a distance is then, explicitly or
implicitly, computed for each couple of documents.
In documents, we can find words or expressions which
are more important than others like person names, place
names, dates, ... These words are called named entities.
They are very important because in a lot of cases the
comparison between two documents is improved when there
are named entities. For example, in politics all documents are
similar (use the same basic words), but they don’t speak about
the same persons and then are differentiated by named entities.

There is two main types of clustering methods:

∙ Hard clustering methods: an element belong to one and
only one cluster.
K-means is a hard clustering method.

∙ Soft clustering methods: an element could belong to
one, two or more clusters.
PLSA is a soft clustering method which assign a proba-
bility for the membership of an element in each cluster.
Other methods could simply assign an element to many
clusters without any probability.

Here, I am only using full documents, but we can segment
each document in little segments which can refer to different
events in the same document. The advantage of soft clustering
method is then not necessary because we suppose that one
segment could only belong to one event. In practice, we see
that there are only a few documents talking about more than
one event.

In this article, I will first present different works done
by other researchers in the domain of event detection and
tracking and text clustering using temporal data. Next, I
will explain two clustering methods: k-means and PLSA
and explain how we adapt them in order to take care of
temporal data. In the fourth part, I will present a time-adapted
hierarchical clustering method we used to tackle the issues we
have with the two previous methods. In the following part, I
present an incremental hierarchical clustering method which
has the purpose of solving problems of the basic hierarchical
clustering method. And finally I will talk about an annotated
corpus I made. As I explained before, we didn’t have any

annotated corpus and this is a big limitation to evaluate
our algorithms. The problem is that we didn’t have time to
manually annotate a corpus. We decide to, first modelize
and manually evaluate some methods and then use a method
which obtain better results to help in the corpus annotation.

II. STATE OF THE ART

The domain of data streams and temporal dynamics has
been explored by many people. [8] is a good overview of
this domain. Statistical methods are used in [11] in order
to detect topics in a three years (330000 documents) corpus
using words and named entities, but they don’t use the time
in their methods. [9] presents an interesting approach of
the use of temporal information in the topic detection and
tracking problem. They present the concept that the similarity
doesn’t depend on only term similarity but also on temporal
similarity. They define the temporal similarity as the coverage
that two events are having.

An other interesting approach that has been observed is
the concept of burstiness. In [4], they model the number of
occurrences of a word in a time window using a binomial
distribution and they compute a burstiness depending on the
probability of the number of occurrences observed. Another
approach to compute the burstiness of words is presented in
[5], where they use a 2-state automaton: bursty and non-bursty
states.

The last idea I saw in the domain is in [3]. They define an
incremental method which puts each new document in an
existing cluster or creates a new cluster if the element is too
far from existing clusters using a k-means like algorithm.
This method is very interesting because it can be used to
cluster documents when they are published and shows the
basic idea for event detection and tracking. At each step, the
document is the continuation of an existing event (tracking)
or defines a new event (detection).
Another article presents a different method but still in the
aim of clustering data streams with an incremental method:
in [13], they extend the conventional kernel density clustering
method in order to make clusters.

III. TIME CONCEPT INTRODUCTION IN K-MEANS AND
PLSA

A. Basic methods

The aim of these two methods is to separate data into K
clusters (K is a pre-defined number).

1) K-means: K-means compute the K centroids to get the
profiles of the K clusters. After the initialization, it iterates a
simple 2 phases algorithm until convergence is reached. The
2 phases are assign each element to the nearest cluster and
recompute the new centroids.

2) PLSA: The Probabilistic Latent Semantic Analysis
method ([6]) is based on a generative model defined by
figure 1. The principle is to suppose that a latent class links
documents and words. There is a probability that a word will

d z w

|w|

|d|

Fig. 1. Generative model for PLSA

be generated in a specific document (in practice, we just have
to count occurrences of a word to have its probability). In
PLSA, we say that a latent class is generated according to a
document and then a word is generated according to the latent
class. In our case, the latent classes are events: a document
belong to one (or some) event(s) and an event is defined by
some words.

Then we can define the joint probability of a word and a
document with latent class:

p(d,w) =
∑
z

p(d) ∗ p(z∣d) ∗ p(w∣z)

B. Updated methods

The two previous method are well-known and don’t take the
time into account. The next methods are the same, but adapted
to take into account the timestamp of each document.

1) K-means: The idea is the same as the basic method:
compute K centroids, each defined by a profile. But an element
or a centroid profile is not a single vector: there is one vector
per feature type. This idea is explained in [10]. We could
have N different feature types. In our case, we just use two
types: words frequency and timestamps. The idea is to say
that 2 documents talking about the same thing but not at the
same time have small chances to refer to the same event. The
only thing changing in the algorithm is the computation of the
distance between a document and a centroid:

dist(d, c) = ¸(distterm(d, c)) + (1− ¸)(disttemporal(d, c))

where d is a document and c is a centroid.

For the temporal distance, we tried 3 possibilities:
∙ Each document and each centroid have a single timestamp

representation:
disttemporal(d, c) = ∣timestamp(d)− timestamp(c)∣
It is very difficult to tune the parameter ¸ with this
method because the data are very heterogeneous. More-
over, this distance doesn’t allow an event to appear
in more than one timestamp, even if timestamps are
neighbors.

∙ Each document and each centroid have the same rep-
resentation for the timestamps and the features. For the
documents, it is a boolean value. For example, [0,0,1,0]
is the timestamp of a document and [0.3,0,0.7,0] is the
timestamp representation of a centroid.
disttemporal(d, c) =

√∑
t

(d(t)− c(t))2

where t is a timestamp
This distance allows, for example, an event to appear the

Monday and the Friday of a week, and is very simple to
include in the algorithm.

∙ The last method is the same as the previous but we
smoothed the documents time vector representation with
a binomial distribution. The idea is to say that instead
of a document appears at day t, it has a probability to
appear at day t−1, t+1, t−2, ... and these probabilities
are defined by a binomial distribution centered on t.
For each timestamp x: p(x∣t) =

(
n
x

)
px(1 − p)n−x with

n = t
p .

where p is a parameter which defines the standard devi-
ation: in this idea, it is the number of days during which
the document timestamps have a positive value.

d z

w

|w|

|d|

t

Fig. 2. Generative model for PLSA with time-stamps

2) PLSA: In order to use the time in PLSA, we have
defined a new generative model shown on Figure 2. This
model generates, in addition to each word, a timestamp. The
basic idea is that each document is defined by a timestamp.
But we could imagine a document which talks about some
events which don’t happen the same day and then generate
a timestamp for each paragraph. Going further, we choose to
generate a timestamp per word even if we know that a word
alone doesn’t talk about an event, but this is the more generic
model using this idea.
We define the joint probability using this new model:

p(d,w, t) =
∑
z

p(d) ∗ p(z∣d) ∗ p(w∣z) ∗ p(t∣z)

We can use an E-M algorithm to compute the values of
p(z∣d) which define the probability of each document to
belong to each cluster and p(w∣z) which is the probability of
each word to appear in each cluster (the model of the cluster).
E-step:

p(z∣d,w, t) ∝ p(d) ∗ p(z∣d) ∗ p(w∣z) ∗ p(t∣z)
M-step:

p(w∣z) ∝
∑

d∈D

∑

t∈T

#(d,w, t) ∗ p(z∣d,w, t)

p(z∣d) ∝
∑

w∈W

∑

t∈T

#(d,w, t) ∗ p(z∣d,w, t)

There is another probability we need to compute in the M-
step: p(t∣z). We first define a basic model (like the computa-
tion of p(w∣z) and p(z∣d)) using a multinomial:

p(t∣z) ∝
∑

d∈D

∑

w∈W

#(d,w, t) ∗ p(z∣d,w, t)

We can add the smoothed time representation of the document
in order to help PLSA to detect nearest documents.

The problem is that cluster time representations obtained
using this method are not focused on neighbor timestamps
and that’s why we tried to use a beta distribution ([2]). The
idea was to smooth the time distribution of an event and
force it to be focused on some neighbor days. The model is
the following:

p(t∣z) = Beta(t, Ã1, Ã2)

and

Beta(t, Ã1, Ã2) =
tÃ1−1(1−t)Ã2−1

∫ 1
0
uÃ1−1(1−u)Ã2−1du

We used the method-of-moments ([2]) to estimate the pa-
rameters Ã1 and Ã2 for each cluster.

3) Evaluation: I evaluated these two methods on a corpus
that spans one year: LE MONDE 2004. This corpus is
composed of about 43000 documents and 160000 words.
Another thing is that this corpus is in French and, in this
report, I have translated the different words. This corpus
is not annotated with events, so I had to manually inspect
clusters to find problems of these methods.

Before showing different results, I will quickly present
pre-processing I’ve done on the corpus. These pre-processing
are done for all evaluations I show in this report:

∙ keep words which appear in more than 2 documents: the
goal is to delete words which may be errors of previous
step.

∙ delete days which contain no document: delete week-ends
and holidays.

∙ compute the tf-idf of each feature for each document.
The term distance (distance between documents using only
words) used in evaluations is the cosine distance:
distcosine(A,B) = 1 − A.B

∣∣A∣∣.∣∣B∣∣ where A and B are two
term vector representations of two documents.

The first thing I evaluated was the k-means method

Fig. 3. clusters time representation using k-means or PLSA with the
unsmoothed document time representation

money

statement

to adress

weapon

core

hundred

Bush

regime

good George

Fig. 4. clusters words representation using k-means or PLSA with the
unsmoothed document time representation

with the unsmoothed time representation method and the
PLSA with multinomial time representation method. These
two methods gave similar results. Figure 3 shows a common
cluster time representation. Observations done on this cluster
are the same as these done on others, but I just present this
cluster here. We see that we grouped 8 timestamps in the
cluster. Many of the documents at these timestamps belong
to the cluster whatever words which belong to them. For
example, figure 4 shows words which define this cluster.
With this observation and the reading of documents which
belong to the cluster we see that our clusters don’t represent
events but just timestamps where documents talk about
“similar” things: I mean that the mean document words
vector representation of these timestamps are similar.

The second thing I evaluated was the K-means (or PLSA)

Fig. 5. clusters time representation using k-means or PLSA with the
smoothed document time representation

Athens

games

olympic

athletics

doping

record

medal

champion

wine

ethic

Batt ist i

I taly

ital ian

alcohol

Cesare

extradit ion

cluster 1

cluster 2

Fig. 6. clusters words representation using k-means or PLSA with the
smoothed document time representation

with the smoothed time representation method. The smoothing

permits to say that events could be neighbors (in the time).
Figure 5 shows the time representation of two clusters and
figure 6 shows words which define these two clusters. Unlike
the previous method, we see that clusters represent a valid
topic: Olympic games and Cesare Battisti extradition for
these two clusters. This is not what we defined as an event
but as a story. This is a real progress but these methods
couldn’t be used to find more specific clusters: they are not
scalable with a big number of clusters due to the memory cost.

The third thing I evaluated was the PLSA with beta

Fig. 7. two cluster time representations using PLSA with beta distribution

distribution as time representation method. Figure 7 shows
two cluster time representations using this method. The beta
distribution constrains the cluster to be centered on only one
timestamp which matches with how we defined an event.
But the problem of clusters which group a lot of events still
persist and we don’t find any story like the previous methods:
clusters are very scraggly.

4) Problems: These methods have a big issue in the event
detection task. As I said before, we don’t know the number of
events in our corpus and these two methods need the number of
clusters before the start of the clustering. Another problem we
encounter was that these methods work with a small number
of clusters and in a one year corpus, there is a big number of
events, so they are unable to detect fine-grain events in a big
corpus.
But we have seen that with good parameters and the smoothed
time representation method, we can detect some stories.
In the next part, I have kept these methods while trying to
improve them using another way to detect events: the word
burstiness.

C. Burstiness concept

Monday Thuesday Wednesday Thursday Friday Saturday Sunday

stock: 4 stock: 2 stock: 1

Bursty

Non bursty

Fig. 8. burstiness example for the word “stock” over a week

1) Burstiness: A word is defined as bursty when it is more
present than its normal frequency. The burstiness notion is
linked to the time. For example and as illustrated on figure 8,
suppose we work with a one week corpus and take the word
“stock” which appears 7 times in the corpus: so its mean
frequency per day is 1. If it appears 4 times the Monday, we
will say that this word is bursty on Monday. The idea is the
same in a large scale.

The first method to compute the burstiness of each word is
very intuitive, it consists in comparing number of occurrences
of a word in a time window with its average frequency, like in
my example (the average frequency can be easily computed
by count). The problem of this method is that a word can
be bursty at day d, not bursty at day d + 1 and bursty again
at day d + 2. In order to smooth this burstiness, we used an
infinite-state automaton method ([7]) for each word.

state 0 state 1 state i- - - - - - state j - - -

cost = (j- i) log(alpha)

P = n/T P = s * n/T P = s^i * n/T P = s^j * n/T

cost = 0

Fig. 9. Find burstiness with an infinite-state automaton

2) Compute burstiness with an infinite-state automaton: We
consider here a corpus with T time windows and a word which
appears n times in the corpus. Figure 9 illustrates this method.
Each state correspond to a burstiness level and a probability is
associated to each state. This probability is the probability that
the word appears in a document at the particular time window.
For example, if the time window contains 10 words, a word
that appears two times has a probability of 20%.

∙ state 0: not bursty (P0 = n/T)
∙ state 1: bursty level 1 (P1 = s(n/T)) where s is a

parameter
∙ ...
∙ state i: bursty level i (Pi = si(n/T))
∙ ...

It is not really an infinite-state automaton because the prob-
ability assigned to a state can’t be bigger than 1, so there is
a imax for each word, but this maximum state depend on P0

which is the occurrence probability of the word in the entire
corpus.
Then, we associate a cost to each time window. For a time
window t, p(t) is the probability of the word and s(t) is the
state:

cost(t) = (p(t)− Ps(t))
2

Then we just have to do a shortest path algorithm such as
Dijkstra to find the sequence of states which match better
with the sequence of observed probabilities of the word.
Figure 10 shows an example of this method. The transition

Bursty Bursty Bursty Bursty Bursty

Non
bursty

Non
bursty

Non
bursty

Non
bursty

Non
bursty

Time

Shortest path

transit ion
cost > 0

transit ion
cost = 0

transit ion
cost = 0

transit ion
cost = 0

Fig. 10. Infinite-state automaton method with only 2 states

cost when becoming more bursty is shown. But this method
is equivalent to the previous one ... it is just a little more
complex.

The difference is that we add a cost transition between
states. The cost is zero when the state “decreases”, but it is
defined as ° when the burstiness state increases.

° = (j − i)log(®)

where j is the new burstiness level, i the previous burstiness
level and ® a parameter. These transition costs smooth the
burstiness: a non-bursty word is not labelled bursty just for
one day and a bursty word is not labelled non-bursty just for
one day.

w

z d

|d|

|w|

z t

Fig. 11. Generative model for PLSA applied to bursty words

3) New method: After computing the burstiness of each
word, we need to find events and then we define an event as a
cluster of words which are bursty together. We decided to use
PLSA again (and not k-means) because a word could belong
to many clusters (for example the word “politic” does not
belong to only one cluster) and k-means don’t permit that an
element clustered belong to more than one cluster. We define
the model shown on figure 11. Following, I write the new
formulas corresponding to the model. We just include a weight
¸ for the time dimension:

p(w, d, t) =
∑
z

p(w) ∗ p(z∣w) ∗ p(d∣z) ∗ p(t∣z)

E-Step:

p(z∣d,w) ∝ p(w) ∗ p(z∣w) ∗ p(d∣z)
p(z∣t, w) ∝ p(w) ∗ p(z∣w) ∗ p(t∣z)

M-Step:

p(d∣z) ∝
∑
w

#(w, d) ∗ p(z∣d,w)

p(t∣z) ∝
∑
w

#(w, t) ∗ p(z∣t, w)

p(z∣w) ∝
∑

d

#(w, d) ∗ p(z∣d,w) + ¸
∑
t

#(w, t) ∗ p(z∣t, w)

The parameter ¸ has to be computed in order to match with
news documents.

4) Evaluation: I evaluated this method on the same cor-
pus as previously: LE MONDE 2004. First, I computed the
burstiness of each word using these parameters:

∙ s = 2
The idea is to say that if a word appears twice its mean
frequency in a time window, so it is bursty in this time
window.

∙ ® = 0.01
We say that, in average, a word is bursty once for one
hundred days.

After this computing, we keep only the words which are
bursty at least once. We keep only 9000 words.

Next we have to compute the probabilities using the
defined PLSA method with parameters:

∙ K: it defines the number of clusters. The clustering
doesn’t change so much when we change this value a
little. For example, clusters with K = 40 or K = 120
are similar and the same problems are presents. In the
following example, I choose K = 40.

∙ ¸: This parameter is used to increase the importance of
one of the two dimensions when defining the clusters:
words and time.

– If we decrease ¸, we increase the weight of the words
and decrease the weight of the time.
In this case, the time representation of clusters is like
the unsmoothed method and cluster documents talk
about the same topic but aren’t grouped in time.

– If we increase ¸, we decrease the weight of the words
and increase the weight of the time.
In this case, the time representation of clusters is
very peaked in the time and cluster documents don’t
talk about specific topic.

¸ = 3 is the value giving average results, which make
clusters group in time in which documents talk about the
same topic. So I used this value for the examples I present
in the following.

Figures 12 and 13 show two clusters computed by this
method. We can see that these two clusters group documents
which talk about a story (like the smoothed method present in
the previous section):

∙ cluster 1 documents talk about a strike of people which
work in the shows.

∙ cluster 2 documents talk about a tsunami which hit Asia
countries.

Fig. 12. clusters time representation using PLSA on bursty words

employers

unemployed

syndicate

strike

CFDT

CGT

contr ibut ion

discharge

tsunami

Phuket

Andaman

seaside

magni tude

tidal wave

Atjeh

Maldives

cluster 1

cluster 2

Fig. 13. clusters words representation using PLSA on bursty words

A thing I can add is that stories found with this method are
not the same as the ones found with the smoothed method.
The problem of events detection is still unsolved by this
method: using PLSA, we are not able to find more and more
clusters.

5) Problems: This method gives better results than the
previous one, but there are still some issues:

∙ This method finds only big stories. By “big story” I
mean stories which are defined by a lot of documents,
for example a hurricane, a war or presidential elections.
But we want to be able to find little clusters defined by
only a few documents too, and these clusters can’t be
found with words burstiness because the burstiness of
their words is hidden before the words burstiness of big
stories.

∙ An other problem of this method is that it does not find
constant stories, like weekly events.

∙ And the problem we have since the beginning persist: we
need to choose the number of clusters.

In the next part, I will present a different way we looked
at: the hierarchical clustering methods. Hierarchical clustering
methods are associated with cut methods which allow to make
a clustering without a fixed number of clusters.

IV. HIERARCHICAL CLUSTERING

A. Basic method

The hierarchical clustering method links each document
with each other in a tree structure called “dendrogram”. At
the beginning, each document is a cluster and at each step, the
algorithm links the 2 nearest clusters making a new cluster.

B. “cut” principle

The dendrogram is just a linkage of all the elements and
don’t give any clustering. It shows the distance of each link.
So, we need a method which defines where we have to cut
the tree in order to have clusters which best match with what
we want.

∙ A classic method is to choose a number K of clusters and
cut the tree as soon as we have this number of clusters.
This method does not help in my case, because we don’t
know the number of events and that’s why we choose to
try hierarchical clustering.

∙ The first and simplest method I used consisted in cutting
the tree at a defined distance level in element groups.

∙ The second method I used was to cut following the
inconsistency criterion defined by Math-works ([1]). The
main idea is: for each link, we look at the difference
between the distance of the current link and the distances
of the previous links and then compute an inconsistency
coefficient. If the coefficient is greater than the limit we
choose, we cut the tree. By default, the algorithm use
only the two links before the current link (for example,
at link ABCDE, the two previous links are AB and CDE).

Ik =
zk−z̄k,k−1,k−2

¾k,k−1,k−2

where Ik is the inconsistency of the link k, zk is the
distance of link k, z̄k,k−1,k−2 is the mean of the distances
of links k, k-1 and k-2, and ¾k,k−1,k−2 is the standard
deviation.
For example, we can compute the inconsistency of the
link ABCDE as:

IABCDE =
dABCDE− dABCDE+dAB+dCDE

3

¾AB,CDE,ABCDE

When two documents (leafs of the tree) are linked, the
inconsistency of the link is 0.

A B C D E

AB CD

CDE

ABCDE

CUT

distance
CUT

inconsistent
CUT

Fig. 14. Cut a dendrogram with 2 conditions: distance and inconsistency

The problem with the inconsistent cut is that when a
document is linked with a cluster and the link has a great
distance or the new cluster has a poor similarity, the link is
not declared inconsistent.
In order to solve this problem, we defined a new cut method
(Figure 14) which use at the same time the inconsistency and
the distance criteria to check a link. A cluster is valid if the
distance which make it is below the threshold and if the link
which create the cluster is not inconsistent.

C. Updated method with timestamps

1) Model: Like the K-means model, we want to include
the time in the similarity between elements and as for the K-
means model, we changed the similarity (distance) function.
But we tried here a more complex time similarity function in
order to increase the difference between nearest elements and
farther elements. We wanted to have a near zero similarity for
elements which have a month between them and keep the full
textual similarity for documents which have been published
the same day.

dist(d1, d2) = distterm(d1, d2) ∗ disttime(d1, d2)

And the definition of distance functions:

distterm(d1, d2) = distcosine(d1, d2)

disttime(d1, d2) = e
−t
n where n is a parameter and

t = ∣t(d1)− t(d2)∣
if we want a quick decrease of the time similarity, we choose
a small n and if we want a slow decrease, we choose a large
n.

2) Problems: This method can’t be used for a big corpus.
We need to save and cut the dendrogram in order to create
clusters, but this tree is too big when we have a one year
corpus. That’s why we made the evaluation of the hierarchical
method on small time windows, like weeks. At the beginning,
we just tried to take time windows which overlap in order to
merge clusters of following clusterings, but this method didn’t
create very good clusters, so in the next part I will explain
another method creating clusters with an incremental method.

3) Evaluation: The evaluation of this method have been
made on the corpus which creation is explained in section ??
but before annotation. At the moment, I didn’t have the time
to finish the corpus annotation. I used this evaluation for 2
reasons:

∙ Test if this method could make a good event clustering.
∙ Test which linkage function use to help in the creation

of the annotated corpus made in section ??.
At the moment, the corpus is composed by approximately
15000 documents which contain 35000 words and 15000
named entities. The method used is the mix between
inconsistency and distance with the two threshold value fixed
to 0.8.
I choose these threshold after looking at clusters computed
using different values and I choose values which are not
optimal, but make average good clusters. The bigger issue we
can find here is one event in more than one cluster, solved
easily manually.

Figure 15 shows the number of elements in clusters
using this method. The average number of elements in a
cluster is 2, 27. We can see that clusters contain a few
documents which match with the lot of little clusters: one or
two documents written on only one webnews on a random
event.
We have a problem with big events containing up to 15

Fig. 15. Number of elements in clusters

documents. We see on the histogram that we only have one
cluster with more than 15 documents:this cluster talk about
“the victory of Helio Castroneves at Indianapolis 500”. But
this is not the only event which have a lot of documents
in this time period. For example, we have an event which
talk about Alia cyclone in India and Bangladesh which
have 15 documents. These other big events are separated in
many little clusters due to the parameters I choose. These
parameters have to be estimated and that’s why the creation
of the annotated corpus is very important.

In order to try to quantify the quality of the different
linkage functions, I have computed two measures on the
corpus:

∙ cophenetic correlation coefficient: the goal is to com-
pare the distance computed between two documents
x(i, j) before the hierarchical clustering and the distance
between the same two documents but in the dendrogram
t(i, j): this distance is just the height of the link which
group these two documents.

c =

∑

i<j

(x(i, j)− x̄)(t(i, j)− t̄)

√√√√⎷
∑

i<j

(x(i, j)− x̄)2
∑

i<j

(t(i, j)− t̄)2

with x̄ the average of all x(i, j) and t̄ the average of all
t(i, j)
This coefficient value is between 0 (bad value) and 1
(very good proximity between the two distances). It
checks if the hierarchical clustering keep the distances
between documents.

∙ spearman’s rank correlation coefficient: it compare
the ranks (the nearest is the first) of all the documents
for each document before the clustering and after the
clustering (distances computed using the dendrogram).
Compared to the previous coefficient, it check only the
rank and not the distance.

½ = 1−
6

∑
d2i

n(n2−1)

with di = ∣xi−yi∣ the difference between ranks of the itℎ

value of the two datasets and n the number of elements
in the datasets.
We have just to do the mean on documents to have the
corpus coefficient.
This coefficient is between -1 (the two list ranks are

opposite) and 1 (the two list ranks are equal).

linkage method cophenetic coefficient spearman coefficient
single 0.2080 0.1107
complete 0.5793 0.1194
weighted 0.7259 0.1622
average 0.8007 0.3011

TABLE I
DIFFERENT MEASURES MADE ON A HIERARCHICAL CLUSTERING

Table I shows the results obtained by the four linkage
methods with these two measures. We see that the average
linkage is the method which gives better average results and
then I choose to use this method to make the annotated corpus.

D. Incremental Clustering
Right now, this method is just in an experimental phase. I

haven’t done any evaluation and I’m waiting for the annotated
corpus in order to quantify the quality and not just say “clusters
look good”. Figure 16 shows the main idea:

A B C D E

AB CD

CDE

ABCDE

t ime window n

AB EF G H

ABF
EG

EGH

ABEFGH

t ime window n+1

CD is a dead cluster

F, G, H
are new documents

Fig. 16. Idea of an incremetal hierarchical clustering method

∙ At step n, the algorithm makes a hierarchical clustering
(presented in the previous section) and returns clusters
which correspond to events. The hierarchical clustering
method used has to be tuned in order to detect right
events.

∙ Then, clusters (defining events) being dead (not alive) are
put into an archive section: a cluster is alive if recent (less
than t days year old) documents belong to it.

∙ At step n + 1, the hierarchical clustering algorithm is
launched on still alive clusters and new documents.

At any moment, clusters being alive and clusters in archive
section represent all events which have been detected so far.

V. BUILDING AN ANNOTATED CORPUS

A. Why an annotated corpus ?
In the aim of evaluate our methods and quantify the quality

of our methods, we need a corpus where each document is

annotated by one or some events it describes. Unfortunately,
we don’t have any corpus with these requirements. So we
decided to crawl and annotate news on the web. The problem
is that manually annotate an entire corpus is very expensive
and/or take a lot of time if we have no tool in order to
uncover some underlying structure. That’s why we choose to
use clustering method to help us to create these annotations:

∙ First, we use a clustering algorithm (which works pretty
well according to a manual evaluation) to create docu-
ment clusters which are supposed to represent events.

∙ Next, we manually use the different events discovered by
the clustering algorithm to annotate a part of the corpus
and manually check for the others.

B. Processing

Source 1 Source 2 Source 3 Source 4

Web

Crawler

HTML
documents

Filtering and
categorizing script

TXT
documents

Lemmatizing script

LEM
documents

Clustering Algorithm

CL
documents

Manual
assignation of
documents to

events

Annotated
documents

Corpus

RSS feeds

indexing

indexed
documents

Retrieval Algorithm

Recall way Precision way

Fig. 17. Creation of an annotated corpus

1) Crawling: The first step consist in choose different
sources on the web and crawl the news published by these
sources. We choose 11 sources: Associated Press, BBC,
CBC, CNN, Fox News, News York Times, Reuters, Ria
Novosti, UsaToday, Washington Post and Xinhua. We tried
to have variety in the source countries to have national
and international news. We have USA news, Britain news,
Russian news and Chinese news. The problem in the sources
choice is that all the news have to be in the same language

(in English) for the clustering. The second choice is the
categories we want, and we took: latest, business, world,
sports and technology because they are the most present
categories in the different webnews.

In the next step, we have to download all the news we
choose. In order to do that, each hour the Crawler download
the different RSS feeds of the source web sites and crawl
news linked in RSS feeds. To avoid downloading many times
the same news, the crawler save at each session titles and
links of the news crawled.
I choose one hour between two crawls to guarantee that each
news is crawled and we don’t miss any document: source
web sites don’t give any information about this subject, but
this is the google reader frequency and I tested on many time
periods that no news is forgotten with this crawl frequency.

2) Filtering: All news are stored on the hard drive in
HTML format and we need to filter these files in order to
keep only the title and the main text. This is also in this phase
that we find the categories for the latest RSS feed news.
The filter script uses a HTML parser and keeps only text in
chosen markups. The operation is the same for the category
search. Each source have its proper news model (markups
which define title, main text or category are not the same in
two different sources) and I have made a parser per source.

An other task done in this part is the suppression of
identical news. Some sources duplicate some news in the
latest RSS feed and in another category, so we have to delete
news which appear many times in our corpus. We used an
basic method which consists in generating and comparing
the md5sum of each filtered file: the md5sum is the result
of a hash function called md5. The main characteristic of a
hash function is that it is very difficult to find two input data
which have the same result.

3) Lemmatization: A Xerox algorithm takes news text files
and finds for each news the different words and their role
in the sentence: it lemmatize documents. The algorithm is
also able to find named entities. A named entity is a word
or a group of words having special meaning: it could be a
person name, a place name, a date, an organization name, ...
As I said in the introduction, these named entities are very
important. A lot of events are defined by these named entities
and making a difference between normal words and named
entities let us use choose weights in order to take more care
of named entities than basic words. In the next step, we don’t
keep all words: some word types are useless to find similarities
between documents, for example it’s the case for adverbs. We
kept only nouns, verbs, adjectives and noun-adjectives.

4) Clustering: The last automatic step of this corpus cre-
ation is the clustering of documents. We use the normal
hierarchical clustering method presented in previous part on
a little set of documents (about 10000 documents). I make
the difference between this set and a entire one year corpus
which include about 100000 documents. We link the most
present words in a cluster of documents as words which

define the cluster. This helps us to know what subject the
cluster documents is referring to. Then, we randomly choose
N clusters (N depend on the size of the corpus we want) and
manually annotate all the documents in this set. For a first
corpus, we choose N = 150.

5) Manual post-processing: The final step of this operation
is the manual definition of events. This step is very important
and have to be done with attention. I will explain in the next
part the dangers of using the clustering we want to evaluate
to help us to annotate documents. There are two main phases
during this step:

1) We define events helped by the clustering (we check
at all clusters and documents of the little set and find
events).

2) We look at documents in all the corpus and add docu-
ments belonging to our defined events in our little set.

To summarize, in this phase, we define events using the
randomly selected set and incorporate documents from the
complete corpus in our events. We have to find all documents
which belong to our events in order to make a good evaluation.

C. Problems and Use

As I said before, our method to annotate the corpus is very
dangerous. Annotations and the method we want to test have
to be independent. For example, if we annotate a corpus with
a K-means method, the test of the K-means method will have
very good results: that’s normal because the corpus is already
annotated by this method.
We finally manually annotate the corpus, but we always have
to be warned. We have to make the same annotations as if
we directly annotate the corpus without using the clusters.
The pre-clustering method is used only to help us. It’s like
if for each document an algorithm present us the K nearest
neighbors of the document. We know documents which talk
about the same events are in its neighborhood. but a document
in its neighborhood is not necessarily talking about the same
event.

This annotated corpus then can be used to test our methods
and quantify the quality of each. It help us to find parameters
values with which we obtain best results and to choose the
different function, like linkage function or distance function
which better find events.

VI. CONCLUSION AND PERSPECTIVES

I have made and tested different models in order to
solve the problem of event detection in big corpus and the
method which has obtained the best results is the hierarchical
clustering principally because we don’t have to choose the
number of events presents in the corpus: cut methods made
good division to shift events. At the moment, I just tested it
on a small corpus in a defined time window and I have still
to evaluate the different linkage function and the different
threshold values to conclude on this method. The next step is
to finish the model of the incremental hierarchical clustering
method and evaluate it in order to know if the method could

be applied on all documents published on the web.

If I had more time, I would have tried to improve this
method or to test other angles of view of the problem:

∙ The first idea to improve the hierarchical clustering
method is to use the burstiness. We saw in previous part
that the burstiness help to detect events and that’s why it
could help even with the hierarchical clustering.

∙ The second idea is to use one step of PLSA on the results
of the hierarchical clustering. After finding and define all
events, we could use PLSA to re-cluster all documents
and then find documents which belong to more than one
event.

∙ The third idea is similar to the previous: segment all
documents in paragraphs or sentences and cluster these
segments which could belong to only one event. If we
segment documents, it’s not necessary to use PLSA.

∙ With the hierarchical method, some documents are linked
because they can’t be inconsistent, but their distance is
sizeable. This is due to the inconsistency definition. The
fourth idea is to add a linkage condition on documents: if
the distance between two documents is above a threshold,
documents are not linked.

REFERENCES

[1] Mathworks, statistics toolbox.
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/inconsistent.html.

[2] Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Beta distribution.
[3] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based

clustering over an evolving data stream with noise. In In 2006 SIAM
Conference on Data Mining, pages 328–339, 2006.

[4] Gabriel Pui Cheong Fung, Gabriel Pui, Cheong Fung, Jeffrey Xu Yu,
Philip S. Yu, S. Yu, and Hongjun Lu. Parameter free bursty events
detection in text streams, 2005.

[5] Qi He, Kuiyu Chang, Ee-Peng Lim, and Jun Zhang. Bursty feature
representation for clustering text streams. In SDM, 2007.

[6] Thomas Hofmann. Probabilistic latent semantic analysis. In In Proc. of
Uncertainty in Artificial Intelligence, UAI99, pages 289–296, 1999.

[7] Jon Kleinberg. Bursty and hierarchical structure in streams, 2002.
[8] Streams Jon Kleinberg and Jon Kleinberg. Temporal dynamics of on-line

information. In In Data Stream Management: Processing High-Speed
Data. Springer, 2006.

[9] Juha Makkonen, Helena Ahonen-myka, and Marko Salmenkivi. Topic
detection and tracking with spatio-temporal evidence. In In Proceedings
of 25th European Conference on Information Retrieval Research (ECIR
2003, pages 251–265. Springer-Verlag, 2003.

[10] Dharmendra Modha and Scott Spangler. Feature weighting in k-means
clustering. In Machine Learning, page 2003, 2002.

[11] David Newman, Chaitanya Chemudugunta, Padhraic Smyth, and Mark
Steyvers. Analyzing entities and topics in news articles using statistical
topic models. In In ISI, pages 93–104. Springer-Verlag, 2006.

[12] Ting Su and Jennifer G. Dy. In search of deterministic methods for
initializing k-means and gaussian mixture clustering. Intell. Data Anal.,
11(4):319–338, 2007.

[13] Dimitris K. Tasoulis, Niall M. Adams, and David J. Hand. Unsupervised
clustering in streaming data. In ICDMW ’06: Proceedings of the Sixth
IEEE International Conference on Data Mining - Workshops, pages 638–
642, Washington, DC, USA, 2006. IEEE Computer Society.

