
Lazylon: a Lightweight and Churn-aware
Membership Protocol

Pierre Louis Aublin
SARDES team

INRIA Grenoble – Rhône-Alpes
Email: pierre-louis.aublin@inria.fr

Abstract—Gossip-based peer sampling protocols are used in
peer-to-peer systems to construct robust overlays. However the
existing protocols do not have any mechanism to adapt themselves
to the churn. In this paper we present Lazylon, a protocol based
on Cyclon which modulates its shuffle period according to the
churn rate. We will see that this protocol allows us to keep a
random network in presence of massive failures and that it uses
the bandwidth according to the churn. Finally the protocol can
be enhanced and this work can be seen as an introduction.

Index Terms—Peer-to-peer, membership management, gossip,
peer-sampling, epidemic protocol

I. I NTRODUCTION

A. Presentation

Nowadays applications are more and more distributed in-
stead of being centralised, to lower down the costs and to
be more scalable. For example if a lot of people is watching
the TV, it will be better for a new client to ask other clients
instead of the overloaded server. By that the application moves
from a client/server model to a peer-to-peer model, where each
machine, also called a peer, is at the same time a client and a
server.

As this is completely decentralised, all the peers need to
build and maintain a graph (called overlay) which has to be
resilient to peer failures, thus it has to look like a random
graph [1].

This is where the peer-sampling service steps in, by letting
the peers know each others [2]. Usually this service uses a
gossip-based approach, because it is lightweight and robust,
even if peers are continuously joining or leaving the system.

Gossip-based protocols were first introduced to maintain
replicated databases [3]. They can be used as a building-block
in monitoring systems [4], but also to handle events such as
flash crowds [5].

In this paper we present Lazylon, a membership protocol
which allows the peers to change their shuffle period according
to the churn rate. Our protocol is built upon Cyclon [6], a
highly scalable and robust membership protocol.

For that, we will first present Cyclon and Lazylon protocols
in Sections 2 and 3 respectively. Then, in Section 4, we are
going to evaluate our protocol. In order to do so we have used a
cycle-based simulator written in Java at the INRIA Grenoble–
Rhône-Alpes. Next, we will talk about possible improvements
in Section 5. Finally, we conclude in Section 6.

B. Background

In peer-to-peer systems, the peers communicate directly
with other peers to exchange data, like the Gnutella protocol.
Hence the peers need to have access to a list of other
peers. This can be done using a server (this is the case with
BitTorrent), but this can also be done by the peers themselves:
for instance this is what GosSkip [7] does. In the second case,
as the peers do not have an infinite amount of memory, they
can have only a partial view of the other peers in the network.
Its size is noted, because this view is sometimes called the
cache.

For example, the Lpbcast [8] protocol maintains a partial
view of the network and ensures the broadcast of a message
over all the peers with a high probability (Lpbcast stands
for Lightweight Probabilistic Broadcast protocol). To do so,
when a peer receives a message, it tries to modify its view
by removing the peers that have unsubscribed and adding
the peers that have recently subscribed in the network. This
operation, where a peer exchanges its view with another peer,
is called a shuffling. This operation is the basic block in active
peer-sampling protocols as it allows the peers to keep up-to-
date their view of the network and to know new peers.

During a shuffle, a peerP sends a list of peers to the peer
Q it gossips with. The size of this list is called the shuffle
length and it is notedl. Finally, the Lpbcast protocol shuffles
its view periodically. We call that period a shuffle period ora
round.

There also exist protocols that shuffle only upon an event.
This is the case for Scamp [9] and HiScamp [10]. In most of
the cases the view size is fixed, but for these two protocols it
changes according to the size of the network. Moreover these
two protocols modify the overlay structure only when new
peers are joining and leaving. Hence there is a special way to
join or leave the network, and the only mechanism for a peer
to detect that it is isolated from the network is the number of
received messages: if it has not received messages for a given
period then it is isolated and it has to join the network again.

By that it takes time to detect failures, which is not (or
at least less) the case with active protocols, that is to say
protocols which shuffle periodically their view, like Cyclon or
Newscast [11]. These two protocols are very similar. Basically
there are 3 main differences between them. Firstly Newscast
choose the peer to gossip with at random. Secondly it sends to

this peer its whole view. Thirdly when a peer receives a view it
merges it with its own view, while Cyclon peers exchange their
views. But as Cyclon it gives an age (in fact a timestamp) to
each peer, to keep only the freshest entries in its view. Finally,
even though they are similar, the results are not the same:
Newscast in-degree distribution shows that a lot of peers have
a small in-degree, while a few peers have a high in-degree.
The in-degree of a peerP corresponds to the number of peers
that haveP in their view, i.e. that knowP, at a given moment.
We are interested in the in-degree distribution because it is
an important property in graphs, and it allows us to express
the randomness of the network. Moreover it gives information
about the robustness of the network: it shows the existence of
weakly or highly connected peers [6]. Furthermore Newscast
peers forget dead peers much more rapidly than Cyclon peers.
The dead peers, also called stale references, are references in
a peer’s view toward peers that are no longer present in the
network, for example because of a failure.

There is another protocol which handles churn, i.e. joining
or leaving peers, in a better way than Cyclon: HyParView [12].
This protocol uses TCP connections between peers to have
a better reliability, like NeEM [13]. It uses 2 views, like
Scamp, but not for the same purpose. And it shuffles these
views by a membership protocol. A membership protocol
is a protocol which allows peers to know each others. It
uses the peer-sampling service to provide peers to gossip
with. Cyclon, Lpbcast, Scamp, HiScamp, NeEM, etc. are
membership protocols, but GosSkip or CREW [14] are not
membership protocols. Indeed even though these protocols
maintain a view, they do not use it to improve the robustness
of the overlay, but only to send data. Unfortunately one of
HyParView’s drawback is that it floods the network with its
messages.

II. CYCLON

Cyclon is an inexpensive gossip-based membership man-
agement protocol for unstructured P2P overlays, fully detailed
in [6]. In this section we are going to present this protocol,
and to expose some of its properties

A. Protocol description

Cyclon peers’ view contains a list of<peer, age>. The
peers are identified by their ip and the port number. The age
is used to have an up-to-date overlay and also to control the
distribution of pointers toward peers in the view. To modify
this view, the peers shuffle periodically. According to [6],the
shuffling period should be of at least 10 seconds. Finally, the
view has a fixed size.

To join the network, a new peerP needs only to know one
other peer, known as theintroducer. Several methods exist for
P to know a peer in the network, like multicast addresses or
contacting a special server.

When a peer wants to exit the network, there is no protocol
for that, and it simply exits the network. Thus departures either
normal or resulting of a failure are handled in the same way.

When a peerP performs the periodic shuffling, it executes
the following steps:

1) increase by 1 the age of all neighbours
2) select neighbourQ with the highest age among all

neighbours andl � 1 other random neighbours (1 �l � view size)
3) replaceQ’s entry with a new entry of age 0 andP’s

address
4) send the updated subset toQ (<shuffling request>)
5) receive fromQ a subset of no more thanl of its own

entries (<shuffling response>)
6) discard entries pointing toP and entries already inP’s

view
7) updateP’s view to include all remaining entries, by

firstly using empty view slots (if any) and secondly
replacing entries among the ones sent toQ

When a peerP receives a message of type<shuffling
request>, it executes the following steps:

1) select at random a subset of size no more thanl
2) send this subset to the initiating peer (<shuffling

response>)
3) receive fromQ a subset of no more thanl of its own

entries (this is this message)
4) discard entries pointting toP and entries already inP’s

view
5) updateP’s view to include all remaining entries, by

firstly using empty view slots (if any) and secondly
replacing entries among the ones sent toQ

The Figure 1 presents an example of the shuffling operation.
In this example the network is composed of the peers 0 to 7,
the view size is 4, the shuffle length is 2 and the peer 5 initiates
the operation. This peer sends the subsetf5, 2g to the peer
6 in the<shuffling request>. Then the peer 6 receives this
message and sends the<shuffling response> with the subsetf4, 7g. It merges the received subset by adding the peer 5 and
replacing the peer 4 by the peer 2 in its view. At the same
time the peer 5 receives the<shuffling response> and merges
the subset with its view by removing the peers 6 and 2.

B. Properties

In this section we will see some properties of Cyclon.
For that we have used our simulator saying that a cycle
corresponds to Cyclon’s shuffle period, and setting the view
size to 20 and the shuffle length to 9. These parameters are
the same through all this paper.

Firstly the in-degree distribution looks like a Gaussian
curve centred (according to [6]) inview size. The Gaussian
distribution in mathematics is associated with the normal law,
which expresses the random behaviour of a variable [15].
Therefore it expresses the randomness of our network graph.

Secondly, Cyclon converges in less than 10 cycles to a
random graph, whatever the bootstrapping method is. To see
that we have used three different bootstrapping methods:
Randomwhere the views are filled at random;Growingwhere
the views are initially filled only with the first peer which has

5

0

2

6

3

1

4

7

(a) Before shuffling

5

0

2

6

3

1

4

7

(b) After shuffling

Fig. 1. Representation of a shuffling operation initiated bythe peer 5.P ! Q means that the peerQ hasP in its view.

been created; andRing where each peer has a pointer toward
the previous and the next (in terms of peer id) peer.

Finally, Cyclon is a good protocol but it sends a lot of
messages in a linear way: with 1000 peers,2 � 107 messages
were sent during 10000 cycles. So the bandwidth cost is
always the same, even if there is no churn and the overlay
is random. This is why in the next section we are going to
present Lazylon, a protocol which modulates its shuffle period
according to the churn rate.

III. L AZYLON

In this section we are going to present our protocol, Lazylon.
Its name comes from the fact that it is based on Cyclon but
is lazier than it.

A. Protocol description

Lazylon is a membership management protocol which de-
tects churn and changes its shuffle period according to it. And
as Lazylon is based upon Cyclon, it handles messages of type<shuffling request> or<shuffling response> like Cyclon. The
periodic shuffling operation of Lazylon peers is the same as
the one of Cyclon peers. Moreover, in Cyclon, when a peer
P gossips with a peerQ, it puts a timer onQ, and if it gets
no reply within a predefined time, then it assumes this peer
not to be active. Therefore, upon the timeout, we increase by
one the number of non-active peers since the last churn rate
computation. This number is stored in thenbChurn variable
and its value is 0 when the peer is created.

Then the peer periodically changes its shuffle period accord-
ing to the following algorithm:

1: every CRU period time unit do
2: prevChurnRate hurnRate
3: hurnRate nbChurn
4: nbChurn 0
5:

6: if hurnRate = 0 then
7: in maxSSTi=0 (i) such that SP + i �MSP
8: SP SP + in
9: else if hurnRate > prevChurnRate then

10: maxDe SP � 1
11: maxChurnRate CRU = SP
12: derease maxDe �hurnRate = maxChurnRate
13: SP SP � bderease
14: else if hurnRate < prevChurnRate and SP <MSP then
15: SP SP + 1
16: end if
17: end every

In this algorithm there are some global variables:

SP This is the current shuffle period value.
MSP This is the maximal shuffle period. We need an upper

bound on the shuffle period because if we don’t do
that, and if the network experiments high churn after
a long and calm period, it will take too much time to
recover from that failure. This limitation can be seen
as the speed limitation on the road: cars can go faster
than it, but for security reasons this is forbidden.

CRU This variable controls how often we compute the
churn rate. It means Churn Rate Unit and corresponds
to a period of time. Its value is equal toMSP because
we obtained the best results with that.

SST This is the shuffle step. If it has a low value then it
will take time for the peers to reachMSP, while if it
has a too high value then it will take more time to
recover from a sudden failure.

From the lines 2 to 4 we compute the churn rate and we
save the previous churn rate value.

Then it is time to adapt its shuffle period. For that we have
3 cases: if there is no churn (lines 6–8), if there is more churn
(lines 9–13), or if there is less churn (lines 14–15).

On line 7,maxSSTi=0 (i) such thatSP+i �MSP means the
maximal value fori between 0 andSST such that the actual
shuffle period plusi is less or equal than the maximal shuffle
period. For example, let’s say thatSST = 5, SP = 10 andMSP = 20. Thus the maximal value fori is SST , becauseSP + SST � MSP . On the other hand, ifSP = 17, then

i = 3, becauseSP + 3 � MSP but SP + 4 > MSP . By
this increase the nodes will shuffle less, thus they will use less
bandwith.

Finally, one can ask why we shuffle less when there is less
churn. The answer is simple: the results are almost the same
as if we do not, but with that we send less messages (order
of hundreds of thousands).

B. TheMSP value

Choosing the maximal shuffle period value has an impact
on the network one may consider. Indeed the lessMSP, the
less stale references we get.

Moreover, whenMSP = 10 the number of sent messages
is almost linear and it becomes greater when we increase the
value of MSP in presence of continuous churn. Hopefully in
all the cases the number of sent messages is less than the one
of Cyclon.

Finally, the mean in-degree is not affected by this choice,
even if it was 19 instead of 20 withMSP= 10.

To conclude, we have chosenMSP = 50 in our design
because it seems to be a good compromise. However we don’t
have a proof and maybe one can find a better value. We can
also say that if one knows he will have churn at high rates in
his network, then it is better to choose a low value, like 10,
because the peers will send few messages (compared to other
values) and they will have a few stale references. However, if
there is no churn or at least a few churn and if we have to pay
attention to the bandwidth, then it is better to choose a higher
value.

IV. EVALUATION

During our simulations, in most of the cases the peers where
shuffling (at least at the beginning for Lazylon peers, as we
will see) every cycle. However, to allow Lazylon peers to
shuffle more than Cyclon peers in presence of churn, we have
set the default shuffle period to 10 cycles in presence of churn.
Moreover we have setMSP at 50,SST at 5 and we had 1000
peers.

The churn was either continuous, i.e. a certain amount of
peers depending on the churn rate was leaving and joining
the network every 500 cycles from cycle 1000 to 3000, or it
was massive, i.e. half of the peers where killed at cycle 500.
In the case of continuous churn the experimented rates where
1%, 5%, 10%, 30%, 50% and 80% of peers. We also took a
look at how peers arrival affects the network, but the results
where the same for the two protocols with every bootstrapping
method presented in section II-B.

First of all, Lazylon peers change their shuffle period
according to the churn rate, as we can see in the Figure 2.

This change results in less sent messages: without churn
Lazylon has sent 97.31% less messages than Cyclon. When
there is churn the number of sent messages becomes greater,
but since there is no more churn it does not increase that
much, as shown in Figure 3. With this result we clearly see
that Cyclon uses a lot of bandwith for nothing.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

nu
m

be
r

of
 m

es
sa

ge
s

cycle

Cumulative number of sent messages

Cyclon
Lazylon

Fig. 3. Total number of sent messages between cycles 0 and 5000 with a
churn rate of 10% in presence of continuous churn for Cyclon and Lazylon.
The vertical lines represent the start and the end of the churn.

Moreover the adaptive shuffle period makes Lazylon peers
to recover (i.e. to reach again a mean in-degree equals to
the view size) more rapidly than Cyclon peers in case of
massive failures. While with continuous churn Cyclon peers
recover more rapidly. In both cases the order of difference is
of hundreds of cycles.

Finally Lazylon’s drawbacks are that it leaves more stale
references in the views and it takes more time to remove
them, as shown in Figure 4. Also, as the nodes don’t have the

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

nu
m

be
r

of
 s

ta
le

 r
ef

er
en

ce
s

cycle

number of stale references

Cyclon
Lazylon

Fig. 4. Total number of stale references through the simulation in presence
of continuous churn at a rate of 5% for Lazylon and Cyclon.

same shuffle period, the in-degree distribution is not random
anymore: during our experiments we obtained 2 random
topologies in our network and not only one for all the nodes.
But this can be simply solve by aggregating the average churn
rate value.

V. ENHANCEMENTS

We have seen in the previous section that Lazylon is cheaper
than Cyclon, and that it recovers from churn slower than
Cyclon, except when there is a massive failure. This is why
we will now see how to enhance our protocol. Of course we
present them one by one, but it is possible to mix them in
order to obtain better results.

A. Possible enhancements

In this subsection we will lists the enhancements we have
tested, while we will show some results about them in the next
subsection.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

pe
rc

en
ta

ge
 o

f n
od

es

shuffle period in cycles

shuffle period

(a) Before churn

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

pe
rc

en
ta

ge
 o

f n
od

es

shuffle period in cycles

shuffle period

(b) 250 cycles later

Fig. 2. peers’ shuffle periods at cycles 999 (a) and 1249 (b), with continuous churn at a rate of 30%.

Firstly, an idea to decrease the number of stale references
is to change the way the protocol chooses the peers to send
when it performs a shuffle operation. The strategy of Cyclon
peers is to select these peers at random, but we have found
an alternative strategy which lead us to better results. Indeed,
instead of choosing the peers at random, we choose thel
(where l is the shuffle length) newest peers in its view (or
peers at random ifview size < l). Therefore the probability
to send a reference to an inactive peer is smaller than with the
default strategy of Cyclon, and by that the peers clear more
rapidly the oldest peers (which are the ones which have more
chances to be inactive) from their view.

Secondly, we can take a look at the number of received
messages: if a peer receives less messages than before, then
maybe this is because there is churn and because it is removed
from other peers views. However we need to be careful and
not to check the number of received messages when there is
no churn, otherwise as the peers shuffle period is increasing
the peers will think there is churn.

Thirdly we can put a lower bound on the decrease. The idea
behind this enhancement is that, as we have seen during the
evaluation, with low churn rates the churn is badly detected.
Therefore even if the churn rate is low, we are sure that the
shuffle period will decrease at least by that lower bound.

Finally, one can observe that in our protocol we compute
always the churn rate at least everyCRU cycles, even if the
shuffle period is less than this value. This is why we can
think of the following enhancement: instead of doing that, we
can have a sliding window of sizeCRU. This window is then
updated and used at each shuffle to compute the new shuffle
period. To experiment this idea we have modified Lazylon’s
code in the following way:

1) When the peer checks if the neighbour it gossips with
is active or not, it also saves this information for the
sliding window.

2) Just after this operation it computes an aggregated value
of the sliding window content and the new information,
and it saves the couple<new information, aggregated
value> into the sliding window, first removing the oldest
element.

3) if the current shuffle is less than the maximal one divided

by 2 then it uses the sliding window to change its shuffle
period, otherwise it uses the ”normal” way. This is not
to change the shuffle period by little steps if it was high
and then churn appears, because with these little steps it
will take more cycles to recover from a massive failure.

The aggregated value is the sum of all the values, knowing
that the first quarter is added twice, to weight the newest values
more than the old ones, but other and better computations
are surely possible. By that we make a difference between
configurations which will otherwise result in the same sum, for
instance111 � � �000 and 000 � � �111. We plan to experiment
on other strategies for computing the aggregate churn rate.

Then, if we use the sliding window to change the shuffle
period, we increase (resp. decrease) the shuffle period by
SST when the computed value is less (resp. greater) than the
previous one. And in the case where the computed value is
equal to 0, then there is no churn so we increase the shuffle
period bySST.

B. Results

For each of these optimisations and in presence of churn
there is more send messages (order of hundred of thousands)
than without. Thus the nodes’ shuffle period is lower and the
views are refreshed more often.

Moreover, except for the sliding window where it was the
same, the number of stale references was lower, as we can
see in the Figure 5. The interesting thing we have observed

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1000 1500 2000 2500 3000 3500 4000

nu
m

be
r

of
 s

ta
le

 r
ef

er
en

ce
s

cycle

number of stale references

Lazylon with strategy change
Lazylon

Fig. 5. Number of stale references for Lazylon with and without the strategy
change, with continuous churn at a rate of 10%.

with the sliding window is that it took roughly 10 cycles less

for the peers to recover from the massive failure than with
or without the other strategies. However in all the cases the
recovery is achieved as fast as without the optimization.

Finally, even if the peak was sometimes lower with an
enhancement, the in-degree distribution looked like the same
with or without the enhancements.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented Lazylon, a protocol based
upon Cyclon which detects the churn and adapts its shuffle
period according to it, to keep an overlay as much random
as possible so as to be very robust. As we have seen it
achieves this goal in presence of massive failure, but it splits
the network in a random and a non-random part in case of
continuous churn. Moreover a drawback is that it leaves stale
references longer than Cyclon. However we have seen possible
improvements to enhance it.

Now that we have a protocol which sends less messages
than Cyclon with good properties, we can leverage it to send
other messages, for example to aggregate information [16],or
for a better churn rate detection [17].

Furthermore a gossip-based protocol to detect churn already
exists [18]. This protocol sends regularly messages to other
peers and keeps a heartbeat counter for each peer in its view.
Then if the time between the last update of this counter and
now is greater than a given threshold, it assumes this peer to
have failed. While that was not tested in our work, we think
that this protocol may be interesting.

There is also another possible future work: it will be easier
to say in our protocol sentences like ”if there is a lot of churn
then decrease highly the shuffle period”. This is what fuzzy
logic does: fuzzy logic [19] is a form of logic which manipu-
lates vague concepts to adapt a system where criteria are hard
to define. Usually the rules are supplied by experts [20], but
it can also be done using neural networks [21].

Finally, it will be a good idea to test our protocol in the
real-world, or at least with traces from existing peer-to-peer
systems. Such traces exist1, and they are analysed by various
papers [22], [23], [24]. The only difficulty for using these
traces is that we need to adapt both them and our simulator
in order to have the relationship between them and our virtual
peers.

ACKNOWLEDGMENT

The author would like to thank everyone from the SARDES
team, and more particularly Vivien Quéma, Alessio Pace and
Willy Malvault, for their precious help and support during this
work.

REFERENCES

[1] B. Bollobas,Random Graphs, W. Fulton, A. Katok, F. Kirwan, P. Sarnak,
B. Simon, and B. Totaro, Eds. Cambridge University Press, 2001.

[2] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,”ACM Trans. Comput. Syst.,
vol. 25, no. 3, p. 8, 2007.

1For example Edonkey traces made by Fabrice Le Fessant in 2003/2004:
http://fabrice.lefessant.net/traces/

[3] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,”SIGOPS Oper. Syst. Rev., vol. 22,
no. 1, pp. 8–32, 1988.

[4] A.-M. Kermarrec and M. van Steen, “Gossiping in distributed systems,”
Operating Systems Review, vol. 41, no. 5, pp. 2–7, 2007.

[5] A. Stavrou, D. Rubenstein, and S. Sahu, “A lightweight, robust p2p
system to handle flash crowds,”SIGCOMM Comput. Commun. Rev.,
vol. 32, no. 3, pp. 17–17, 2002.

[6] M. v. S. Spyros Voulgaris, Daniela Gavidia, “Cyclon: Inexpensive
membership management for unstructured p2p overlays,”Journal of
Network and Systems Management, 2005.

[7] R. Guerraoui, S. Handurukande, K. Huguenin, A.-M. Kermarrec,
F. Le Fessant, and E. Riviere, “GosSkip, an Efficient, Fault-Tolerant and
Self Organizing Overlay Using Gossip-based Construction and Skip-
Lists principles,” in IEEE International Conference on Peer-to-Peer
Computing, 2006.

[8] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and
A.-M. Kermarrec, “Lightweight probabilistic broadcast,”ACM Trans.
Comput. Syst., vol. 21, no. 4, pp. 341–374, 2003.

[9] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie, “SCAMP:
Peer-to-peer lightweight membership service for large-scale group
communication,” in Networked Group Communication, 2001, pp.
44–55. [Online]. Available: citeseer.ist.psu.edu/ganesh01scamp.html

[10] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Hiscamp: self-
organizing hierarchical membership protocol,” inEW10: Proceedings
of the 10th workshop on ACM SIGOPS European workshop. New
York, NY, USA: ACM, 2002, pp. 133–139.

[11] M. Jelasity, W. Kowalczyk, and M. V. Steen, “Newscast computing,”
2003.

[12] J. Leitao, J. Pereira, and L. Rodrigues, “Hyparview: A membership
protocol for reliable gossip-based broadcast,” inDependable Systems
and Networks, 2007. DSN ’07. 37th Annual IEEE/IFIP International
Conference on, June 2007, pp. 419–429.

[13] J. Pereira, L. Rodrigues, M. J. Monteiro, R. Oliveira, and A.-M. Kermar-
rec, “Neem: Network-friendly epidemic multicast,”Reliable Distributed
Systems, IEEE Symposium on, vol. 0, p. 15, 2003.

[14] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubramanian,
and S. Mehrotra, “Crew: A gossip-based flash-disseminationsystem,”
in Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE
International Conference on, 2006, pp. 45–45.

[15] W. Feller, An Introduction to Probability Theory and Its
Applications, Volume 1. Wiley, January 1968. [Online]. Avail-
able: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0471257087

[16] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” inFOCS ’03: Proceedings of the 44th Annual
IEEE Symposium on Foundations of Computer Science. Washington,
DC, USA: IEEE Computer Society, 2003, p. 482.

[17] N. Hayashibara, A. Cherif, and T. Katayama, “Failure detectors for
large-scale distributed systems,”Reliable Distributed Systems, IEEE
Symposium on, vol. 0, p. 404, 2002.

[18] R. Van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure
detection service,” Ithaca, NY, USA, Tech. Rep., 1998. [Online].
Available: http://portal.acm.org/citation.cfm?id=866975

[19] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy
Logic: Theory and Applications. Upper Saddle River, NJ,
USA: Prentice Hall PTR, May 1995. [Online]. Avail-
able: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0131011715

[20] B. Kosko and S. Isaka, “Fuzzy logic,” vol. 269, no. 1, pp.76–?? (Intl.
ed. 62–??), Jul. 1993.

[21] C.-T. Lin and C. Lee, “Neural-network-based fuzzy logic control and
decision system,”Computers, IEEE Transactions on, vol. 40, no. 12, pp.
1320–1336, Dec 1991.

[22] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “A measurement study
of the bittorrent peer-to-peer file-sharing system,” 2004.[Online]. Avail-
able: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.4761

[23] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement study of
peer-to-peer file sharing systems,” 2002.

[24] S. B. Handurukande, A.-M. Kermarrec, F. Le Fessant, L. Massoulié,
and S. Patarin, “Peer sharing behaviour in the edonkey network, and
implications for the design of server-less file sharing systems,” in
EuroSys, 2006, pp. 359–371.

