Lazylon: a Lightweight and Churn-aware
Membership Protocol

Pierre Louis Aublin
SARDES team
INRIA Grenoble — Rhone-Alpes
Email: pierre-louis.aublin@inria.fr

Abstract—Gossip-based peer sampling protocols are used in B. Background
peer-to-peer systems to construct robust overlays. Howewredhe
existing protocols do not have any mechanism to adapt themkses In peer-to-peer systems, the peers communicate directly
to the churn. In this paper we present Lazylon, a protocol basd with other peers to exchange data, like the Gnutella prdtoco
ggurcny‘;ge‘ Vw:acr:/vmos%lgattﬁgt itf“ :hurfc?tic%?:a?% ngcggdiggkg; thg Hence the peers need to have access to a list of other
random network in presence of mffssive failures and that it Lplss p(.aers. This can t?e done using a server (this is the case with
the bandwidth according to the churn. Finally the protocol can ~ BitTorrent), but this can also be done by the peers themselve
be enhanced and this work can be seen as an introduction. for instance this is what GosSkip [7] does. In the second,case
as the peers do not have an infinite amount of memory, they
can have only a partial view of the other peers in the network.
Its size is noted:, because this view is sometimes called the

|. INTRODUCTION cache.

A. Presentation For example, the Lpbcast [8] protocol maintains a partial

N _— I view of the network and ensures the broadcast of a message

owadays applications are more and more distributed in-

stead of being centralised, to lower down the costs and Qe all the peers with a high probability (Lpbcast stands

) ; . for Lightweight Probabilistic Broadcast protocol). To do, s
be more scalable. For example if a lot of people is Watchlr\llghen a peer receives a message, it tries to modify its view
the TV, it will be better for a new client to ask other client P ge,

instead of the overloaded server. By that the applicatiomersuo%y removing the peers that have unsubscribed and adding

: the peers that have recently subscribed in the network. This
from a client/server model to a peer-to-peer model, wheeh ea

machine, also called a peer, is at the same time a client angpgration, where a peer exchanges its view with another peer
server ' ' IS called a shuffling. This operation is the basic block invact

As this is completely decentralised, all the peers needbge(ger'samp"ng protocols as it allows the peers to keep p-to

build and maintain a graph (called overlay) which has to te the" view of the network and “? know new peers.
resilient to peer failures, thus it has to look like a random Puring a shuffle, a peel? sends a list of peers to the peer
graph [1]. Q it gossips with. The size of this list is called the shuffle
This is where the peer-sampling service steps in, by lettifg’9th and it is noted. Finally, the Lpbcast protocol shuffles
the peers know each others [2]. Usually this service used!$, view periodically. We call that period a shuffle periodeor
gossip-based approach, because it is lightweight and tobi8Und: _
even if peers are continuously joining or leaving the system There also exist protocols that shuffle only upon an event.
This is the case for Scamp [9] and HiScamp [10]. In most of
Gossip-based protocols were first introduced to maintalif€ cases the view size is fixed, but for these two protocols it
replicated databases [3]. They can be used as a buildirgxbl§hanges accordlng_to the size of the network. Moreover these
in monitoring systems [4], but also to handle events such &0 protocols modify the overlay structure only when new
flash crowds [5]. peers are joining and leaving. Hence there is a special way to
In this paper we present Lazylon, a membership protod6in or leave the network, and the only mechanism for a peer
which allows the peers to change their shuffle period acogrdito detect that it is isolated from the network is the number of
to the churn rate. Our protocol is built upon Cyclon [6], &ceived messages: if it has not received messages fora give
highly scalable and robust membership protocol. period then it is isolated and it has to join the network again
For that, we will first present Cyclon and Lazylon protocols By that it takes time to detect failures, which is not (or
in Sections 2 and 3 respectively. Then, in Section 4, we aaé least less) the case with active protocols, that is to say
going to evaluate our protocol. In order to do so we have usegmtocols which shuffle periodically their view, like Cycdiar
cycle-based simulator written in Java at the INRIA GrenebleNewscast [11]. These two protocols are very similar. Bdlgica
Rhone-Alpes. Next, we will talk about possible improvetisenthere are 3 main differences between them. Firstly Newscast
in Section 5. Finally, we conclude in Section 6. choose the peer to gossip with at random. Secondly it sends to

Index Terms—Peer-to-peer, membership management, gossip,
peer-sampling, epidemic protocol

this peer its whole view. Thirdly when a peer receives a view i When a peeP performs the periodic shuffling, it executes
merges it with its own view, while Cyclon peers exchangerthaihe following steps:

views. But as Cyclon it gives an age (in fact a timestamp) t0 1) increase by 1 the age of all neighbours

each peer, to keep only the freshest entries in its viewllyina 2) select neighbouQ with the highest age among all
even though they are similar, the results are not the same: pejghbours and — 1 other random neighbourd (<

Newscast in-degree distribution shows that a lot of peeve ha [< view size)

a small in-degree, while a few peers have a high in-degreeg) replaceQ's entry with a new entry of age 0 an@s
The in-degree of a pedt corresponds to the number of peers address

that haveP in their view, i.e. that knowP, at a given moment. 4) send the updated subset@o(<shuffling request)
We are interested in the in-degree distribution becauss it i 5) receive fromQ a subset of no more thahnof its own
an important property in graphs, and it allows us to express ' entries shuffling response)

the randomness of the network. Moreover it gives infornmatio) discard entries pointing t8 and entries already i®'s
about the robustness of the network: it shows the existefice 0 yjew

weakly or highly connected peers [6]. Furthermore Newscast7) ypdateP's view to include all remaining entries, by
peers forget dead peers much more rapidly than Cyclon peers. firstly using empty view slots (if any) and secondly
The dead peers, also called stale references, are refsrance replacing entries among the ones sentto

a peer’s view toward peers that are no longer present in tthhen a peerP receives a message of typeshuffling

network, _for example because Qf a failure. . _requesb, it executes the following steps:
There is another protocol which handles churn, i.e. joining .
1) select at random a subset of size no more than

or leaving peers, in a better way than Cyclon: HyParView [12] : L .
This protocol uses TCP connections between peers to havé) feesnp%nfsh:) subset to the initiaing peexspuffling

a better reliability, like NeEM [13]. It uses 2 views, like 3 Ve T b f hainof |
Scamp, but not for the same purpose. And it shuffles these) receive rme asu set of no more thanot its own
entries (this is this message)

views by a membership protocol. A membership protocol4 i 4 entri intiing B and entri ready iF’
is a protocol which allows peers to know each others. It) viles\(/:var entries pointling & -and entries already IR's
uses the peer-sampling service to provide peers to gossi . . - .

P Ping P P g R updateP’s view to include all remaining entries, by

with. Cyclon, Lpbcast, Scamp, HiScamp, NeEM, etc. are) firstl .) | it d dl
membership protocols, but GosSkip or CREW [14] are not irstly using gmpty view slots (if any) and secondly
replacing entries among the ones sen@to

membership protocols. Indeed even though these protocols
maintain a view, they do not use it to improve the robustnessThe Figure 1 presents an example of the shuffling operation.
of the overlay, but only to send data. Unfortunately one d&f this example the network is composed of the peers 0 to 7,
HyParView's drawback is that it floods the network with itdhe view size is 4, the shuffle length is 2 and the peer 5 ietiat
messages. the operation. This peer sends the subget2} to the peer
6 in the <shuffling request. Then the peer 6 receives this
II. CYCLON message and sends tkeshuffling response with the subset
. . .)) {4, 7}. It merges the received subset by adding the peer 5 and
Cyclon is an inexpensive gossip-based membership Magpacing the peer 4 by the peer 2 in its view. At the same
agement protocol for unstructured P2P overlays, fullyiteda 116 the peer 5 receives theshuffling response and merges

in [6]. In this section we are going to present this protocola sypset with its view by removing the peers 6 and 2.
and to expose some of its properties

B. Properties

A. Protocol description In this section we will see some properties of Cyclon.

Cyclon peers’ view contains a list ofpeer, age-. The For that we have used our simulator saying that a cycle
peers are identified by their ip and the port number. The agerresponds to Cyclon’s shuffle period, and setting the view
is used to have an up-to-date overlay and also to control thige to 20 and the shuffle length to 9. These parameters are
distribution of pointers toward peers in the view. To modifghe same through all this paper.
this view, the peers shuffle periodically. According to [Ble Firstly the in-degree distribution looks like a Gaussian
shuffling period should be of at least 10 seconds. Finally, tleurve centred (according to [6]) imiew size. The Gaussian
view has a fixed size. distribution in mathematics is associated with the norraaj |

To join the network, a new pedt needs only to know one which expresses the random behaviour of a variable [15].
other peer, known as thietroducer. Several methods exist for Therefore it expresses the randomness of our network graph.
P to know a peer in the network, like multicast addresses orSecondly, Cyclon converges in less than 10 cycles to a
contacting a special server. random graph, whatever the bootstrapping method is. To see

When a peer wants to exit the network, there is no protodblat we have used three different bootstrapping methods:
for that, and it simply exits the network. Thus departuréisezi Randomwhere the views are filled at rando@rowingwhere
normal or resulting of a failure are handled in the same wahe views are initially filled only with the first peer which ia

(a) Before shuffling (b) After shuffling

Fig. 1. Representation of a shuffling operation initiatedthey peer 5P — Q means that the pe€) hasP in its view.

been created; anRing where each peer has a pointer towardo: maxDec + SP — 1
the previous and the next (in terms of peer id) peer. 11: mazChurnRate < CRU | SP
Finally, Cyclon is a good protocol but it sends a lot ofi2: decrease — maxDec *
messages in a linear way: with 1000 peers,10” messages churnRate | maxzChurnRate
were sent during 10000 cycles. So the bandwidth cost is: SP <+ SP — |decrease|

always the same, even if there is no churn and the overlay. else if churnRate < prevChurnRate and SP <
is random. This is why in the next section we are going to MSP then
present Lazylon, a protocol which modulates its shufflequeri 15: SP + SP+1
according to the churn rate. 16: end if
17: end every
, . . In this algorithm there are some global variables:

In this section we are going to present our protocol, Lazylon
Its name comes from the fact that it is based on Cyclon bu
is lazier than it.

I1l. LAZYLON

tSP This is the current shuffle period value.
MSP This is the maximal shuffle period. We need an upper
bound on the shuffle period because if we don’t do

A. Protocol description that, and if the network experiments high churn after
Lazylon is a membership management protocol which de- a long and calm period, it will take too much time to
tects churn and Changes its shuffle period according to id An recover from that failure. This limitation can be seen
as Lazylon is based upon Cyclon, it handles messages of type as the speed limitation on the road: cars can go faster
<shuffling request or <shuffling response like Cyclon. The than it, but for security reasons this is forbidden.
periodic shuffling operation of Lazylon peers is the same asCRU This variable controls how often we compute the
the one of Cyclon peers. Moreover, in Cyclon, when a peer churn rate. It means Churn Rate Unit and corresponds
P gossips with a pee®, it puts a timer onQ, and if it gets to a period of time. Its value is equal tosp because
no reply within a predefined time, then it assumes this peer ~ We obtained the best results with that.

not to be active. Therefore, upon the timeout, we increase bySST This is the shuffle step. If it has a low value then it
one the number of non-active peers since the last churn rate Will take time for the peers to reaahsp, while if it

computation. This number is stored in théChurn variable has a too high value then it will take more time to
and its value is 0 when the peer is created. recover from a sudden failure.

Then the peer periodically changes its shuffle period accord From the lines 2 to 4 we compute the churn rate and we
ing to the following algorithm: save the previous churn rate value.

1: every CRU period_time_unit do Then it is time to adapt its shuffle period. For that we have

2. prevChurnRate < churnRate 3 cases: if there is no churn (lines 6-8), if there is more chur

3. churnRate < nbChurn (lines 9-13), or if there is less churn (lines 14-15).

4 nbChurn < 0 On line 7,maz357 (i) such that SP+i < M SP means the

5: maximal value fori between 0 and' ST such that the actual

6: if churnRate = 0 then shuffle period plug is less or equal than the maximal shuffle

7 inc < mazx;37 (i) such that SP +i < MSP period. For example, let's say th&atST = 5, SP = 10 and

8 SP + SP +inc MSP = 20. Thus the maximal value faris SST, because

9 else if churnRate > prevChurnRate then SP + SST < MSP. On the other hand, ifP = 17, then

i = 3, becauseSP +3 < MSP but SP +4 > MSP. By o8 ——
this increase the nodes will shuffle less, thus they will ess | oo
bandwith. -

Finally, one can ask why we shuffle less when there is less
churn. The answer is simple: the results are almost the same
as if we do not, but with that we send less messages (order
of hundreds of thousands).

700000

600000

500000

400000

number of messages

300000
200000

100000

B. Thewmsp value N —

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
cycle

Choosing the maximal shuffle period value has an impact

on the network one may consider. Indeed the kas®, the Fig. 3. Total number of sent messages between cycles 0 ar@ \&itld a
churn rate of 10% in presence of continuous churn for Cycluth laazylon.

less stale references we get. The vertical lines represent the start and the end of thenchur
Moreover, whenmsp = 10 the number of sent messages
is almost linear and it becomes greater when we increase the
value of MSP in presence of continuous churn. Hopefully in Moreover the adaptive shuffle period makes Lazylon peers
all the cases the number of sent messages is less than thetonecover (i.e. to reach again a mean in-degree equals to

of Cyclon. the view size) more rapidly than Cyclon peers in case of
Finally, the mean in-degree is not affected by this choicmassive failures. While with continuous churn Cyclon peers
even if it was 19 instead of 20 witkisp = 10. recover more rapidly. In both cases the order of differesce i

To conclude, we have chosemsp = 50 in our design of hundreds of cycles.
because it seems to be a good compromise. However we donfinally Lazylon’s drawbacks are that it leaves more stale
have a proof and maybe one can find a better value. We caferences in the views and it takes more time to remove
also say that if one knows he will have churn at high rates them, as shown in Figure 4. Also, as the nodes don't have the
his network, then it is better to choose a low value, like 10,
because the peers will send few messages (compared to other L eserseees
values) and they will have a few stale references. Howefrer, i e |
there is no churn or at least a few churn and if we have to pay b
attention to the bandwidth, then it is better to choose adrigh
value.

IV. EVALUATION

During our simulations, in most of the cases the peers where
shuffling (at least at the beginning for Lazylon peers, as we v @ oo me o w0 ww 0 e o e
will see) every cycle. However, to allow Lazylon peers to
shuffle more than Cyclon peers in presence of churn, we hdv@ 4. Total number of stale references through the siriauiah presence

. . i 0,
set the default shuffle period to 10 cycles in presence ofrchyf! continuous churn at a rate of 5% for Lazylon and Cyclon.

Moreover we have sedsp at 50,ssTat 5 and we had 1000 _ _ L
peers. same shuffle period, the in-degree distribution is not ramdo

The churn was either continuous, i.e. a certain amount pymore. during our experiments we obtained 2 random

peers depending on the churn rate was leaving and joinié)é)totlﬁ_gies inbour_netlworkl ang not only (;ne Iﬁr all the nodﬁs.
the network every 500 cycles from cycle 1000 to 3000, or is can be simply solve by aggregating the average churn

was massive, i.e. half of the peers where killed at cycle sdote value.

In the case of continuous churn the experimented rates where

1%, 5%, 10%, 30%, 50% and 80% of peers. We also took a

look at how peers arrival affects the network, but the result We have seen in the previous section that Lazylon is cheaper

where the same for the two protocols with every bootstrappithan Cyclon, and that it recovers from churn slower than

method presented in section 1I-B. Cyclon, except when there is a massive failure. This is why
First of all, Lazylon peers change their shuffle periowe Will now see how to enhance our protocol. Of course we

according to the churn rate, as we can see in the Figure 2present them one by one, but it is possible to mix them in
This change results in less sent messages: without ch@ffer to obtain better results.

Lazylon has sent 97.31% less messages than Cyclon. When _

there is churn the number of sent messages becomes gre4tefssible enhancements

but since there is no more churn it does not increase thatn this subsection we will lists the enhancements we have

much, as shown in Figure 3. With this result we clearly sdested, while we will show some results about them in the next

that Cyclon uses a lot of bandwith for nothing. subsection.

V. ENHANCEMENTS

shuffle period shuffle period

percentage of nodes
percentage of nodes

°

‘ ‘ ‘ ‘ \ ‘
shuffle period in cycles shuffle period in cycles

(a) Before churn (b) 250 cycles later

Fig. 2. peers’ shuffle periods at cycles 999 (a) and 1249 (ki) @ontinuous churn at a rate of 30%.

Firstly, an idea to decrease the number of stale references by 2 then it uses the sliding window to change its shuffle
is to change the way the protocol chooses the peers to send period, otherwise it uses the "normal” way. This is not
when it performs a shuffle operation. The strategy of Cyclon to change the shuffle period by little steps if it was high
peers is to select these peers at random, but we have found and then churn appears, because with these little steps it
an alternative strategy which lead us to better resultseddd will take more cycles to recover from a massive failure.

instead of choosing the peers at random, we choose the The aggregated value is the sum of all the values, knowing
(wherel is the shuffle length) newest peers in its view (othat the first quarter is added twice, to weight the newestagl
peers at random ifiew size < [). Therefore the probability more than the old ones, but other and better computations
to send a reference to an inactive peer is smaller than wéth thre surely possible. By that we make a difference between
default strategy of Cyclon, and by that the peers clear maggnfigurations which will otherwise result in the same suon, f
rapidly the oldest peers (which are the ones which have mafgtancel11 ---000 and 000---111. We plan to experiment
chances to be inactive) from their view. on other strategies for computing the aggregate churn rate.

Secondly, we can take a look at the number of receivedThen, if we use the sliding window to change the shuffle
messages: if a peer receives less messages than before, peeiod, we increase (resp. decrease) the shuffle period by
maybe this is because there is churn and because it is remoged when the computed value is less (resp. greater) than the
from other peers views. However we need to be careful apeevious one. And in the case where the computed value is
not to check the number of received messages when theregsial to 0, then there is no churn so we increase the shuffle
no churn, otherwise as the peers shuffle period is increasjpeyiod byssT.
the peers will think there is churn.

: . ,B. Results

Thirdly we can put a lower bound on the decrease. The idea o)
behind this enhancement is that, as we have seen during thEOT €ach of these optimisations and in presence of churn
evaluation, with low churn rates the churn is badly detectef€re is more send messages (order of hundred of thousands)
Therefore even if the churn rate is low, we are sure that tfe@n without. Thus the nodes’ shuffle period is lower and the

shuffle period will decrease at least by that lower bound. Views are refreshed more often. _
Finally, one can observe that in our protocol we compute Moreover, except for the sliding window where it was the
always the churn rate at least evergu cycles, even if the same, the number of stale references was lower, as we can

shuffle period is less than this value. This is why we car© in the Figure 5. The interesting thing we have observed

think of the following enhancement: instead of doing thag, w
can have a sliding window of sizeru. This window is then T R
updated and used at each shuffle to compute the new shuffle L
period. To experiment this idea we have modified Lazylon’s
code in the following way:

number of stale references

1) When the peer checks if the neighbour it gossips with
is active or not, it also saves this information for the
sliding window.

2) Just after this operation it computes an aggregated value . S J N
of the sliding window content and the new information, o w
and it S_aves the_ C.OUDIe_neW m_formatlon’_ aggregated Fig. 5. Number of stale references for Lazylon with and withine strategy
value> into the sliding window, first removing the oldestchange, with continuous churn at a rate of 10%.
element.

3) if the current shuffle is less than the maximal one dividedlith the sliding window is that it took roughly 10 cycles less

3500 4000

for the peers to recover from the massive failure than withs] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson, Ser®r,

or without the other strategies. However in all the cases the H- Sturgis, D. Swinehart, and D. Terry, *Epidemic algoritanfor
. . . S replicated database maintenanc8JGOPS Oper. Syst. Rewol. 22,
recovery is achieved as fast as without the optimization. no. 1, pp. 8-32, 1988.

Finally, even if the peak was sometimes lower with arf4] A.-M. Kermarrec and M. van Steen, “Gossiping in disttiat systems,”

enhancement, the in-degree distribution looked like thraesa __ Operating Systems Revigvol. 41, no. 5, pp. 2-7, 2007.
[5] A. Stavrou, D. Rubenstein, and S. Sahu, “A lightweighabust p2p

with or without the enhancements. system to handle flash crowds3IGCOMM Comput. Commun. Rev.
vol. 32, no. 3, pp. 17-17, 2002.
VI. CONCLUSION AND FUTURE WORK [6] M. v. S. Spyros Voulgaris, Daniela Gavidia, “Cyclon: kpensive

; membership management for unstructured p2p overlajmjrnal of
In this paper we have presented Lazylon, a protocol based Network and Systems Managemeza0s,

upon Cyclon which detects the churn and adapts its shuffig] R. Guerraoui, S. Handurukande, K. Huguenin, A.-M. Kemree,
period according to it, to keep an overlay as much random F. Le Fessant, and E. Riviere, “GosSkip, an Efficient, Faolerant and

; ;v Self Organizing Overlay Using Gossip-based Constructiod 8kip-
as pOSSIble so as to be very robust. As we have seen it Lists principles,” in IEEE International Conference on Peer-to-Peer

achieves this goal in presence of massive failure, but itsspl Computing 2006.
the network in a random and a non-random part in case @l P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Ketsav, and

; ; ; A.-M. Kermarrec, “Lightweight probabilistic broadcastACM Trans.
continuous churn. Moreover a drawback is that it leave® stal Comput. Systvol. 21, no. 4, pp. 341-374, 2003,

references longer than Cyclon. However we have seen pessilpy] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie, “SCAMP:
improvements to enhance it. Peer-to-peer lightweight membership service for largdescgroup

: communication,” in Networked Group Communication2001, pp.
Now that we have a protocol which sends less messages 44-55. [Online]. Available: citeseer.ist.psu.edu/gagdscamp.html

than Cyclon with good properties, we can leverage it to sep@] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Hiswp: self-
other messages, for example to aggregate information ¢t6], Ol[ginizinghhieralicnical membership protocol,” BW10: Prlfscr:eedings
; of the 10th workshop on ACM SIGOPS European workshoplew
for a better churn rate_ detection [17]. York, NY, USA: ACM. 2002, pp. 133-139.
Furthermore a gossip-based protocol to detect churn alreagh) m. Jelasity, W. Kowalczyk, and M. V. Steen, “Newscastrgmuting.”
exists [18]. This protocol sends regularly messages torothe 2003.

. J. Leitao, J. Pereira, and L. Rodrigues, “Hyparview: Aembership
peers and keeps a heartbeat counter for each peer in its V{éa\} protocol for reliable gossip-based broadcast,”Dependable Systems

Then if the time between the last update of this counter and and Networks, 2007. DSN '07. 37th Annual IEEE/IFIP Intefowaal
now is greater than a given threshold, it assumes this peer to Conference onJune 2007, pp. 419-429.

have failed. While that was not tested in our work. we thinﬂ3] J. Pereira, L. Rodrigues, M. J. Monteiro, R. Oliveirada.-M. Kermar-
’ ! rec, “Neem: Network-friendly epidemic multicasReliable Distributed

that this protocol may be interesting. Systems, IEEE Symposium, @ol. 0, p. 15, 2003. _
There is also another possible future work: it will be easié4] M. Deshpande, B. Xing, |. Lazardis, B. Hore, N. Venkatasmanian,

; Lo : and S. Mehrotra, “Crew: A gossip-based flash-disseminagigstem,”
to say in our protocol sentences like "if there is a lot of ehur in Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE

then deCI’ease h|gh|y the Shufﬂe pe”od“ ThIS |S What fuzzy International Conference qr2006, pp. 45-45.
logic does: fuzzy logic [19] is a form of logic which manipu-{15] W. Feller, An Introduction to Probability Theory and Its

[Applications, Volume .1 Wiley, January 1968. [Online]. Avail-
lates vague concepts to adapt a system where criteria ale har able: http://www.amazon.com/exec/obidos/redirect2titgulike07-

to define. Usually the rules are supplied by experts [20], but 20&path=ASIN/0471257087
it can also be done using neural networks [21]. [16] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based coatjout of

: : : : ; aggregate information,” iFOCS ’'03: Proceedings of the 44th Annual
Fma"y’ it will be a gOOd idea to test our protocol in the IEEE Symposium on Foundations of Computer Sciend¥ashington,

real-world, or at least with traces from existing peer-e&p DC, USA: IEEE Computer Society, 2003, p. 482.
systems. Such traces exisand they are analysed by variou$l7] N. Hayashibara, A. Cherif, and T. Katayama, “Failuretedtors for

e ; large-scale distributed systemsReliable Distributed Systems, IEEE
papers [22], [23], [24]. The only difficulty for using these Symposium anvol. 0, p. 404, 2002,

traces is that we need to adapt both them and our simulat®] R. Van Renesse, Y. Minsky, and M. Hayden, “A gossipetfailure
in order to have the relationship between them and our Virtua detection service,” Ithaca, NY, USA, Tech. Rep., 1998. [a]l
peers Available: http://portal.acm.org/citation.cfm?id=866&
' [19] G. J. Klr and B. Yuan, Fuzzy Sets and Fuzzy
Logic: Theory and Applications Upper Saddle River, NJ,
ACKNOWLEDGMENT USA: Prentice Hall PTR, May 1995. [Online]. Avail-
The author would like to thank everyone from the SARDES able: http://www.amazon.com/exec/obidos/redirect2tagulike07-
. . , . 20&path=ASIN/0131011715
team, and more particularly Vivien Quéma, Alessio Pace a] B. Kosko and S. Isaka, “Fuzzy logic.” vol. 269, no. 1, fi§-?? (Int.
Willy Malvault, for their precious help and support duririgs ed. 62-?7?), Jul. 1993.
work. [21] C.-T. Lin and C. Lee, “Neural-network-based fuzzy logiontrol and
decision system,Computers, IEEE Transactions ovol. 40, no. 12, pp.
1320-1336, Dec 1991.
REFERENCES [22] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “A nteasent study
[1] B. Bollobas,Random Graphs\. Fulton, A. Katok, F. Kirwan, P. Sarnak, of the bittorrent peer-to-peer file-sharing system,” 2q@hline]. Avail-
B. Simon, and B. Totaro, Eds. Cambridge University Pres8§120 able: http://citeseerx.ist.psu.edu/viewdoc/summani2iD.1.1.3.4761
[2] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermasyeand M. van [23] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measunenstudy of
Steen, “Gossip-based peer samplinhCM Trans. Comput. Syst. peer-to-peer file sharing systems,” 2002.
vol. 25, no. 3, p. 8, 2007. [24] S. B. Handurukande, A.-M. Kermarrec, F. Le Fessant, lasbbulié,
and S. Patarin, “Peer sharing behaviour in the edonkey mietvemd
implications for the design of server-less file sharing eyst,” in

1For example Edonkey traces made by Fabrice Le Fessant in/20uB8
EuroSys 2006, pp. 359-371.

http://fabrice.lefessant.net/traces/

