An Abstraction Relation
for Energy Consumption Properties

Master student: Laurie Lugrin
Supervisors: Florence Maranintrand Laurent Mounier
* Verimag, 2, avenue de Vignate, 38610BRES — France
Email: (firsthame.(lasthamé @imag.fr

Abstract—This paper deals with the validation of energy con- At last, systems are often designed component-wise because
sumption properties for embedded systems. We are particularly they are too big to be designed as a single flat automaton.
interested in formal validation based on models for the validation The abstraction relation must be modular to cope with this
of worst-case energy consumption. We restrict ourself to non- "
functional properties, that is, the system behaviour does not fact. It guaraptees that the_ composition of abStraCt,mOdbls
depend on the amount of energy consumed or left. In most casesComponents is an abstraction of the complete detailed model
models are too big to run verification, so we consider model We use an abstract relation which observes these criteria
abstractions. and which was first proposed by Ludovia®PER in [1]. He

We use power state automata to model systems and an abstrac-proved this relation to be a congruence w.r.t. the synchusno

tion relation which is suitable to the worst-case consumption. We o - . .
propose an automatic procedure to check whether a model is an composition. To make this abstraction relation usefuldhly

abstraction of a given detailed model. thing left is to find an automatic decision procedufer the
abstraction relation.
|. INTRODUCTION A solution could consist in adapting general methods like

o]]) abstract interpretation [2]. It would probably lead to a non
Energy saving is becoming a major social concern thiact procedure. We favour an ad-hoc procedure, based on
last few years and affects computer systems design. 'td?aphs, which is exact and efficient.
particularly important in embedded systems because they ha The paper is structured as follows. First we present related
a limited stock of energy. Energy saving increases the att&yorks in Section Il. Then we give formal definitions in Seatio
life, or the system lifespan in case the battery cannot B¢ and propose a decision procedure for the abstractioa rel

recharged. tion in Section IV. Section V deals with some implementation
The problem we are dealing with is that there is no welletails and Section VI concludes.

established design methods to guarantee properties ogyener

consumption, so we turn towards ad-hoc methods. In thisrpape Il. RELATED WORKS

we choose to consider a formal approach in order to verify Our work pursues an earlier study of LudoviaN&PER [1].
properties on energy, like worst-case lifespan of a system. His topic was the computation of the worst-case lifespan

We usepower state automati model the system, a widely of wireless sensor networks. He modelled components with
used formalism to express resource consumption. It censist power state automata and defined an abstraction relatiachwhi
standard input/output automata (transductors) with $tdtels takes into account the environment, described by a language
expressing the instantaneous energy consumption. We oo#jled context in which components are used. He proved this
consider systems whose behaviour does not depend on rilation to be a congruence w.r.t. the synchronous conipnosit
amount of energy left or consumed. In this case, propertigdich means that abstract models of components can be
on energy are said to be non-functional. Our models fit ouapmposed and form an abstract model of the global detailed
expressiveness need. model. A point is missing to make this work usable in practice

Several validation methods can be used to check propert¥stract models should be validated, either by constnuciio
on energy. In most cases we need to abstract the system fissan independent decision procedure. We complete his work
to allow verification within a reasonably short time. with such automatic decision procedure.

An abstraction relation must suit the type of property we The authors of [3] also use discrete models and abstrac-
want to prove. Device providers are interested in guaramgeetions to analyse costs. They focus on long-run cost. This
a worst-case battery life, thus many relevant propertied davork is hard to adapt to energy consumption of embedded
with worst-case energy consumption. Consequently anatistiSystems because their battery can die long before the long-
model must over-approximate the consumption of the detaileun consumption becomes a possible abstraction of the real
one. consumption. Moreover, [3] only give a sufficient condition

Moreover, as abstract models are usually built by hand, W&\ otice that th lidations in th if cafi -
need an automatic procedure to decide Whether a model iS otice that there are two validations in the verification qass: first,

) aBtract models are validated; and second the full model idatati against
abstraction of another one. a property. We only deal with the abstract model validation.

for this approximation to be correct, whereas we have antexacThe synchronous product of and B, noted A x B is the
answer. Mealy automaton

Another energy representation of components could be , 4 B /A By rA. 1B A B A B
Linearly Priced Timed Automaté PTA) [4]. Originally these (87 x 8%, (s, 50), [TV I7, 07N O7, T, 87 x 5¢)
hybrid models were designed for scheduling purposes. TheyRereT is defined as follows:
are minimum-cost algorithms for these models, but they are

-A LB A B
expensive in time and cannot be easily adapted to maximum- (¢, ¢7) A7)/ (e A7), (@.d)erT =
cost problems, which is our main interest to find a worst-case ,, , B, B
. A /o A A B /o B B
consumption. (¢f — @)eT" Ngg —— g €T

I1l. FORMAL DEEINITIONS We define some functions to observe automata executions.

In this section, we define models we use, compositida€finition (States, Out, Cost). Let A be a Mealy automaton
operators on them and the abstraction relation. and (A, C) a cost automaton. Let be a finite trace defined

Two kinds of models are involved in the abstraction relatio®" the automaton input signals. _
component model and context model. A standard input/outputStates(4,t) is the sequence of states passed through during
automaton and a recogniser could be used to represenif’@ execution offt ont. Out(A, 1) is the sequence of outputs
component and a context, respectively. However, for siitpli emitted during the execution of on ¢.

sake, we use an automaton which is a mix between these twé-€t Stat@S(Avt)n = [s0,51,---,sn]. Then
models. This makes the composition easier. Cost((A,C),t) = > .o C(s))-
~ We callinputa boolean formula over input signals.tlice The synchronous composition for cost automata is the
is a finite sequence of inputs. standard synchronous composition of the Mealy automata
Definition ((deterministic) Mealy automaton)A Mealy au- and an operation of the cost functions. This operation is a
tomaton is tuple(S, so, I, 0, 7', Sy) where parameter and can be chosen depending on the use case.

« S is a finite set of states Definition (synchronous product for cost automatdlet

« 30 € S is the initial state M4 = (A,C4) and M® = (B,CP) be two cost automata,

« [is a set of input signals and op: R x R — R be a commutative and associative

o O is a set of output signals operator on real numbers.

o« T'C Q x B(I) x B(O) x Q is a set of transitions. A The synchronous product df/* and MZ parameterised

transition (s, , 0, s') is written s /% s’ by op, writtenM# xop M7, is the cost automatod/” =
. S;C Sis a set of accept states. (D,CP) whereD = (S, s0,1,0,T,Sy) is defined as follows
such that for all states € S and for all inputsi € B(I) : De AxB
. L. ifo ° = X

there is at most one transition — s’ for someo € B(O) « Y(a,b) €S CP(a,b) = C4(a) opCB(b)

ands’ € S.

) In the sequel cost automata will be viewed as weighted
When representing a component, a Mealy automaton Myt cteq graphs.

be satisfyS = Sy because all input traces aaepriori possible. o _ _ _)
It must also be complete, i.e. for all statesnd all inputsi Definition (weighted directed graph)A weighted directed
there is a transition froma whose guard is. When modelling graph is a tuple(V, £, w) where

a context, its set of output signals is empty. « V is a set of vertices
Accepted traceand languageare defined as for standard « £ CV x V is a set of edges
input/output automata. « w:FE — R is a weight function.

Definition (Cost automaton)A cost automaton is a Mealy Definition (weighted directed graph induced by a cost
automaton(S, so, I, 0, T, S¢) such thatS = Sy, together with automaton) Let M = ((Q,Qo,1,0,T,Qy),C) be a cost
a cost function”' : S — R which labels each state with a costautomaton.M induces a weighted directed graph, written

Cost automata are used to model components. The c(ozsr‘tapmM) = (V, E) and defined as follows:

represents the instantaneous energy consumption. o V'=5U{vinit} U {Vhna}

Notice that energy does not appear on guards of cost where {vini, inal} N 5 = 0
automata. It is consistent with our hypothesis of non-fiamgtl ~ * (V1:v2) € Eiff o
properties: the system does not change its behaviour dngord ~ 3i € B(/) - Jo € B(O) -v1 — v €T
to the energy. o (vinit, s0) € £
o (v,vinal) € E for all v e Qg

Definition (synchronous product for Mealy autom- The weight functions is defined as follows:

ata) Let A = (S4,s3,14,04,74,54) and B =
(S, s§, 17,08, TP, 57) be two Mealy automata. V(vi,v2) € E,vs # vina w((v1,v2)) = C(vz)

and
V(v1, vinat) € £ w((v1, Viinat)) = 0

Notice that costs are on states in automata whereas they are
on the incoming edges in graphs. Notice also that graphs have
two particular vertices, the initial and the final ones. Itl\wi
useful to run classical graph algorithms.

We now give the definition of the abstraction relation, first
introduced by Ludovic 8MPER in [1]. As usual abstraction
relations, it sets that both models have the same outputs if
they receive the same inputs, and that the abstract model ove
approximates the detailed one, which means in our energy
context that the abstract model consumes more than the
detailed one.

An originality in Ludovic SAMPER’s work was to parame-
terise the abstraction relation with a set of possible safm
which the abstraction relation must hold. The other traces a
considered as unrealistic and nothing is required for thhis
avoids a relevant abstract model to be refused only bechase t
abstraction does not hold for some unrealistic traces. Ehe s
of realistic traces is calledontext We choose to describe it
using a regular language. It is modelled by a Mealy automaton
with an empty set of output signals.

Definition (Context-Based Abstraction Relatior)et A/4 =
(A,C%) and MB = (B,CP) be two cost automata, anf’
a Mealy automaton. We say thaf ? is an abstraction model
of M4 under the contex’, written A < B, iff:

Out(A,t) = Out(B,1)
and
Cost(A,t,C*) < Cost(B,t,CB)

IV. DECISION PROCEDURE

Vit € L(K),

We propose a procedure that decides, given two component
models and a context model, whether one model is an abstrac-
tion of the other one under the context. We explain the idea of

recv/b

(a) detailed modeA

off /

send /

3 3’ recv /
‘ send / b'
idle / a' recv / b'

off /
(b) abstract modelB
idle send

recv

.
send
recv

<

(c) context model K

Figure 1. Data example

the procedure, before giving elements of the proof. Then vagoduct) them so as to get an automaton which represents
study the complexity of the procedure and finally explain hoRoth automata in parallel. _
this procedure can be extended to produce a counter-exampléecond, we want to test outputs and energy consumption

A running example is given in Fig 1.

only for traces given in the context. To filter relevant paths

we compose the context with the previous product. Let’s call

A. Informal description

the resultP. The product for our running example is given in

We want to compare two component models described Big 2(a).

power state automata. Let’s call the detailed madielnd the
supposed abstract modBl. The context is noteds.
The question is whether is an abstraction ofB under

Now, we have a unique condensed structiéitewith all
the information we need. We have to test the two following
properties: for each accepted traceRfall transitions along

the contextK, written A <x B. We have to check the the path which validates that trace are labelled with theesam
two following properties. The output property states thathb outputs for A and B; for each accepted trace @f, the sum
component models should have the same outputs if thefyall costs collected along the path 18y is greater or equal
receive the same input trace and this trace is an acceptad tta the sum forA.

of K. The energy property states that the abstract matiel

Clearly, we cannot consider each path individually because

should have a greater consumption than the detailed médethe number of paths may be infinite. We have to be crafty and

for all accepted traces of.

find an equivalent global property on the automaton, for both

First, we want to comparel and B with respect to their properties.
outputs and energy consumption, when running with the same~or the property on outputs, we have to consider all transi-
inputs. So the first step is to compose (by synchronotisns which can be taken while validating a trace, and only

YVt e K
o Let

(oj‘);ig_l = Out(A,t)
(0P)1=5 " = Out(B,1)
Vje[o,n—1]:0f =of
and

: : Z?:o CA(“J’) < Z?:o CB(bj)
1) Product: Suppose that the detailed modél and the
presumed abstract on8, as well as the contex¥, are

complete. This means that for any stateand any input:

there is a transitiors Z/—O> s’ for someo and s’. If this is

not the case, it is easy to make them reactive by adding sink

states.
(a) product automato (b) graphG induced by the prod- Intuitively, this implies that during the parallel exeaitj
uct no automaton blocks the execution of another one. More
Figure 2. Structures built to validaté <z B (given in Fig. 1) formally, the following properties hold for the produét =

A x B x K. First, asA and B have only accept states, the

product P recognises the same languagefas Second, for

all executions the output produced by the proditis the
these ones. They are exactly the transitions which can disjoint union of the outputs produced by and B for the
reached from an initial state and lead to an accept statavé&So,same trace. The produgét for the running example is given
can clean the automatah, so as to remove all useless stateis Fig 2(a).
and transitions, and then check each transition, one dfeer t We want to compare outputs of and B on transitions of
other. In the running example, the product of Fig 1 is already but the product operator gathers outputs in a set. We can
clean. get round this problem by adding primes &output signals

For the broperty on eneray consumotion. we consider cml?efore building the product, so as to keep all output signals
: property gy pton, Sde by side on the transitions. We introduce an equivalence
the difference of instantaneous consumptions betweemnd

A. Now we want to check that for all accepted tracesFof functionequivwhich mapsA outputs on3 outputs to compare

: ; ...them.
the sum of the differences collected along the path is pesiti The definition ofA <, B can be written equivalently this

or null, that isB over-approximates the energy consumptio\r)vay,
of A. In other traces, we want to check that no path betweepgt’

an initial state and an accept state is strictly negativec#e . p_ A4« B x K
simply run a lightest-path algorithm on the automaton, @eéw |,

as a weighted graph, and check that the lightest path has :a V:t el?et
positive weight. The graph for our running example is given : :

(a;bik;) = = States(P,t)
by Fig 2(b). S0

(03-40;3)22871 = Out(P,t)

Vj € [0,n—1] : equio}, oF)
and
: : : Z?:O OA(aj) < Z?:O CB(bj)

2) Cleaning: The second step is the cleaning of the product:
we remove states (and transitions) of the prodithat cannot

The proof is organised in successive formula equivalent le@ reached, and those which cannot lead to a final state. Let's
the definition of A <x B. The last formula is an effective call P the result.
decision procedure because it is computable. The execution of an accepted tracePwnly passes through
states and transitions which are kept ih Traces which

A _ A ~
Mghe_ d%taogre t\r/]\’g Co,\‘;’t allutomtafg ¢ m_(</|1|’§) rin?(t are rejected byP are also rejected by’. So the cleaning
= (B,C”), and a Mealy automatoi’ called conte operation does not alter executions on the product. In our

which recognises a non-empty language. An example of d?u%ning exampleP — P. It is the case whenevet, B and
is given in Fig 1. ' '

K are clean. ~
The definition of A < B can be written as follows: Then we can usé’ instead ofP:

B. Proof sketch

Let

5 For sake of simplicity, we construct the graghinduced
P = cleanindA x B x K) plicity, graph

by the cost automaton/” as defined in the previous section.

In Vte P The graph for our running example is given in Fig 2(b).
¢ Let Notice that a path has the same cost (or weight) on the cost
: (ajbjk;)J 5 = States(P. 1) automata and on the induced graph. So we want to determine
: A Bri=n_1 - whether there is a path o which has a negative weight.
- (0f07)jzg = Out(Pst) It is sufficient to find the weight of the lightest path. If it is
In Vj € [0,n — 1] : equio?, 0F) positive, then all the other paths have a positive weighanth
and 7% the consumption property is true. If it is strictly negativieen
ZJ - C4(a;) < ZJ _ CB(b;) we have a negative path and consumption property is false. If

there is no lightest path (this may happen when the graph has
L3) OUtPUtS Let's focus on the output part of the propertyjeqative loops), there are paths of arbitrary light weighen

some of them are negative, then the consumption property is
= cleaningA x B x K) false 9 ption property

Vie P Thus, for the consumption part, we have to check:

t
Let G = Grapl{cleanindA x B x K))
wmin= weight-of-the-lightest-patit?)

In

- (0P = Out(Pt)
In In

¥j € [0,n — 1] : equivo}’, of) . wminis well defined andvmin> 0
We do not need to consider every accepted trace, we carrhe work is not finished, because we did not detailed the
simply consider every transition of the mode! Indeed, each procedure that finds the weight of the lightest path. There
transition of P is on a path between the initial state anére many lightest-path algorithms but their behaviour is no

an accept state, so for each transition, there is at least elgined when the graph has negative loops.

accepted trace passing through it, and then each transitish If there is a negative loop, it is necessarily reachable from

be such that its output signals are the same4&and B. the initial state and it can lead to the final state because the
For the output part, we have to check: cost automaton was cleaned. Then, if some negative loop is
et detected, there is a negative path and the consumptionnbyope
P = cleanindA x B x K) is false.
Ip oAb .) N Finally, for the consumption part, we have to check:
v. €T Il P's wransitions Lzet G = GrapHcleanindA x B x K))
b0t =0" t (has-neg-loopvmin) = lightest-pathiG)
4) Consumption:Now, let’'s focus on the consumption part In
of the property: : not has-neg-loopandwmin > 0
Let 5) Discussion:This is in fact a decision procedure because
P = cleaningA x B x K) both formula on outputs and energy are computable. Indeed,
Ip Vi e P all the functions we use are computable: product and graph
: < Ejet construction, cleaning and lightest-path finding. Morepve
: (a;b;k;) 0= S’tates(P t) visiting all the transitions of? is feasible because the model
In is finite.
Yoo CMag) < X OP(b) C. Complexity
The last line can be written this way_7_,(C”(b;) — e first focus on the product. In the worst case the states of
C*(az)) > 0. a product are the Cartesian product of the states of itsriacto

Then we define a cost automatd” = (P,CT) where However, in our case, we expect both component models to
the cost functiorC'* associated with the produét is defined be close to each other because they represent the behafiour o
as follows: the same component. Then the product of component models
N B ” has about the same size as the detailed model. Moreover, we

Vae @7, vbeQ", VkeQ", expect the model describing the context to be small (tyjyical
C’ﬁ(abk) = OB (b) — C(a) about 10 states) because it is a simple recogniser written by
hand. Based on these two hypotheses we assume that the

Now, we want to determine whether there is a trace whigroduct of the three automata has almost the same size than
has a negative cost when executed/erWe want to explore the detailed model. Let compute the complexity relativaly t
all paths between the initial state and an accept states$ony its size.
on the consumption. Note that we are using the non-fundtiona The construction of the product has a linear cost, and so
hypothesis: if there were guards on transitions, some paties the cleaning operation because it consists in visitihg a
should not be explored. states and transitions.

The procedure dedicated to the output property examinesOnce we have a negative loop, we find two paths as
every transition, its cost is also linear. previously, from the initial state to one state of the loopd a
The one dedicated to the consumption property first coffom it to a final state.
structs a graph. Since the graph has almost the same s@ructuiFinally, we can exhibit a counter-example without increas-
as the product, its construction has a linear cost. Thenirg the complexity.
lightest-path algorithm is used on the graph. There are many
such algorithms. To the best of our knowledge, the most
efficient one that we can use in the presence of negativeWe implemented the decision procedure for the abstraction
loops is the Ford-Bellman [5], [6] one. Its complexity iswe proposed in Python [8].
O(n x m) wheren is the number of states and the number ~ We used the RGoslanguage [9] to describe automata and
of transitions. In the worst case there is a transition betwethe ARGoscompiler [10] to compute the synchronous product
any two states andn = n?, but in our case, the numberof these automata.
of transitions from a given state is bounded by the numberAnother point is the choice of a lightest-path algorithm. We
of distinct inputs that can be received. This number is smaleed an algorithm which finds the lightest path between two
compared to the number of states, then= O(n) and the given vertices and allows for negative weights on edges and
complexity of the lightest-path algorithm &(n?). negative cycles. We choose Ford-Bellman algorithm because
To summarise, the complexity of our decision procedure iishas the smaller complexity. Moreover we managed to alter
the complexity of the Ford-Bellman algorithm, thatn?). it so as to exhibit a negative loop in case there are some, as
described in Section IV-D.
D. Counter-example generation We tested our program with small examples and it worked in
)) less than one second. We have no doubt that it will be quick for
As abstract models are built by hand, it would be useful igqstrial problems, because our algorithm is efficient ted
get a counter-example of the abstraction relation in cage ity,o4els we have to deal with are quite small. As an example,

false.)) hardware component models (e.g. radio) have about 10 states
A counter-example consists of a trace in the context for

which either the output property or the consumption propert VI. CONCLUSION

does not hold. We have presented an automatic decision procedure for the
In case the abstraction is false because of outputs, #gstraction relation which uses graph algorithms to chbek t
procedure detects a transition with two different outpéts. over-consumption of the abstracted model against theldédtai
counter-example is a trace passing through this transition gne. In case the abstraction is false, we provide a procedure
can be exhibited by finding a path from the initial state t@ thio find a counter-example. It can be used to guarantee that
transition and another one from it to an accept state. Pat$ abstract model, smaller than the detailed one, satisfées t
necessarily exist because the transition belongs to tlEmete property of over-consumption. Then the validation aldwrit
product. These two searches are less expensive than ¢hR use the new model instead of the detailed one. It helps
lightest-path algorithm and so do not change the complexiyoiding blow-up. The procedure is efficient so this gain is
of the procedure. not balanced by an expensive pre-process.
In case all outputs are the same but energy is not over-Since Ludovic 3MPER proved the congruence of this
approximated for some trace, we distinguish two cases. abstraction relation [1], it is possible to use our procedur
If the graph has no negative loop, the Ford-Bellman algen component models. It is useful because it is much easier
rithm exhibits a lightest path, and it is our counter-exampl to find an abstract model of a small component than one of a
Otherwise we would like to find one of the negative loopgull complex system.
All the lightest-path algorithms we found do not do that. Tha This work can be applied to embedded systems, where
is why we slightly alter the Ford-Bellman algorithm to makenergy consumption is a major issue. Besides, it will be used
it exhibit a simple negative loop. The change is simple. The study the worst-case lifespan of wireless sensor nesyork
standard Ford-Bellman algorithm iteratively looks forlmabf as part of RRESA [11] project.
size 1, 2, ..n — 1 if n is the number of vertices, because in As a further work we plan to deal with functional properties
case there are no negative loop, there is a lightest patlzef 9n order to study systems whose behaviour changes according
less or equal taw — 1 between any two different vertices. Toto the quantity of available energy. More complex models to
deal with negative loops, we have to look for paths of size represent components is a must. We plan to use automata with
because a negative loop could go throughnallertices once. some kinds of guards allowed on the edges. The challenge is
In the »'" loop iteration, we remember the transition whicho find a tradeoff between the expressiveness of the models an
was last used to find a lightest path. This transition is part the efficiency of methods we will apply on them. Concerning
a negative cycle and the procedure usually used to find pathe decision procedure for the abstraction, we will firstlesg
in the standard Ford-Bellman algorithm can be used herenwthods based on abstract interpretation [2]. They are too
find a negative loop, as we proved in [7]. Our extension doéeavy for the data we use in this paper but suit the extensions
not alter the complexity of the standard algorithm. we consider. Notice that since the composition of component

V. IMPLEMENTATION

models with the context model seems unavoidable, the contex
model can be enriched as much as the component mOd[?f L. Samper, “Modclisations et analyses déseaux de capteurs,” Ph.D.

without making the final working structure more complex.

(2]

(3]

(4]

(5]
(6]
(7]

(8]
El

[20]

(11]

REFERENCES

dissertation, INPG, 2008.

P. Cousot and R. Cousot, “Static determination of dynamiperties of
programs,” inProceedings of the Second International Symposium on
Programming Dunod, Paris, France, 1976, pp. 106-130.

D. Cachera, T. Jensen, A. Jobin, and P. Sotin, “Long-rost @nalysis
by approximation of linear operators over dioid&gcture Notes in
Computer Sciengevol. 5140, pp. 122-138, 2008.

G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Petters$oRomijn,
and F. Vaandrager, “Minimum-Cost Reachability for Priced Tdme
Automata,” inProceedings of the 4th International Workshop on Hybrid
Systems: Computation and Contrdbpringer-Verlag London, UK, 2001,
pp. 147-161.

R. Bellman, “On a routing problemQuarterly of Applied Mathematics
vol. 16, no. 1, pp. 87-90, 1958.

L. R. Ford, Jr. and D. R. Fulkersorslows in Networks Princeton
University Press, 1962.

L. Lugrin, “Using Abstraction for the Validation of Nofunctional
Properties,” Master’s thesis, UJF, 2009.

“Python,” http://www.python.org/.

F. Maraninchi and Y. Bmond, “Argos: an automaton-based synchronous
language,”Computer Languagewol. 27, no. 1/3, pp. 61-92, 2001.

D. Stauch, “Compilateur Argos,” http://www-verimag.imé&/~altisen/
DSTAUCH/ArgosCompiler/.

“ARESA" http://aresa-project.insa-lyon.fr/.

