
An Abstraction Relation
for Energy Consumption Properties

Master student: Laurie Lugrin�

Supervisors: Florence Maraninchi� and Laurent Mounier�
� Verimag, 2, avenue de Vignate, 38610 GIÈRES – France

Email: hfirstnamei.hlastnamei @imag.fr

Abstract—This paper deals with the validation of energy con-
sumption properties for embedded systems. We are particularly
interested in formal validation based on models for the validation
of worst-case energy consumption. We restrict ourself to non-
functional properties, that is, the system behaviour does not
depend on the amount of energy consumed or left. In most cases
models are too big to run verification, so we consider model
abstractions.

We use power state automata to model systems and an abstrac-
tion relation which is suitable to the worst-case consumption. We
propose an automatic procedure to check whether a model is an
abstraction of a given detailed model.

I. I NTRODUCTION

Energy saving is becoming a major social concern this
last few years and affects computer systems design. It is
particularly important in embedded systems because they have
a limited stock of energy. Energy saving increases the battery
life, or the system lifespan in case the battery cannot be
recharged.

The problem we are dealing with is that there is no well-
established design methods to guarantee properties on energy
consumption, so we turn towards ad-hoc methods. In this paper
we choose to consider a formal approach in order to verify
properties on energy, like worst-case lifespan of a system.

We usepower state automatato model the system, a widely
used formalism to express resource consumption. It consists of
standard input/output automata (transductors) with statelabels
expressing the instantaneous energy consumption. We only
consider systems whose behaviour does not depend on the
amount of energy left or consumed. In this case, properties
on energy are said to be non-functional. Our models fit our
expressiveness need.

Several validation methods can be used to check properties
on energy. In most cases we need to abstract the system first
to allow verification within a reasonably short time.

An abstraction relation must suit the type of property we
want to prove. Device providers are interested in guaranteeing
a worst-case battery life, thus many relevant properties deal
with worst-case energy consumption. Consequently an abstract
model must over-approximate the consumption of the detailed
one.

Moreover, as abstract models are usually built by hand, we
need an automatic procedure to decide whether a model is an
abstraction of another one.

At last, systems are often designed component-wise because
they are too big to be designed as a single flat automaton.
The abstraction relation must be modular to cope with this
fact. It guarantees that the composition of abstract modelsof
components is an abstraction of the complete detailed model.

We use an abstract relation which observes these criteria
and which was first proposed by Ludovic SAMPER in [1]. He
proved this relation to be a congruence w.r.t. the synchronous
composition. To make this abstraction relation useful, theonly
thing left is to find an automatic decision procedure1 for the
abstraction relation.

A solution could consist in adapting general methods like
abstract interpretation [2]. It would probably lead to a non
exact procedure. We favour an ad-hoc procedure, based on
graphs, which is exact and efficient.

The paper is structured as follows. First we present related
works in Section II. Then we give formal definitions in Section
III and propose a decision procedure for the abstraction rela-
tion in Section IV. Section V deals with some implementation
details and Section VI concludes.

II. RELATED WORKS

Our work pursues an earlier study of Ludovic SAMPER [1].
His topic was the computation of the worst-case lifespan
of wireless sensor networks. He modelled components with
power state automata and defined an abstraction relation which
takes into account the environment, described by a language
calledcontext, in which components are used. He proved this
relation to be a congruence w.r.t. the synchronous composition,
which means that abstract models of components can be
composed and form an abstract model of the global detailed
model. A point is missing to make this work usable in practice:
abstract models should be validated, either by construction or
by an independent decision procedure. We complete his work
with such automatic decision procedure.

The authors of [3] also use discrete models and abstrac-
tions to analyse costs. They focus on long-run cost. This
work is hard to adapt to energy consumption of embedded
systems because their battery can die long before the long-
run consumption becomes a possible abstraction of the real
consumption. Moreover, [3] only give a sufficient condition

1Notice that there are two validations in the verification process: first,
abstract models are validated; and second the full model is validated against
a property. We only deal with the abstract model validation.

for this approximation to be correct, whereas we have an exact
answer.

Another energy representation of components could be
Linearly Priced Timed Automata(LPTA) [4]. Originally these
hybrid models were designed for scheduling purposes. There
are minimum-cost algorithms for these models, but they are
expensive in time and cannot be easily adapted to maximum-
cost problems, which is our main interest to find a worst-case
consumption.

III. F ORMAL DEFINITIONS

In this section, we define models we use, composition
operators on them and the abstraction relation.

Two kinds of models are involved in the abstraction relation:
component model and context model. A standard input/output
automaton and a recogniser could be used to represent a
component and a context, respectively. However, for simplicity
sake, we use an automaton which is a mix between these two
models. This makes the composition easier.

We call input a boolean formula over input signals. Atrace
is a finite sequence of inputs.

Definition ((deterministic) Mealy automaton). A Mealy au-
tomaton is tuplehS; s0; I; O; T; Sf i where

� S is a finite set of states
� s0 2 S is the initial state
� I is a set of input signals
� O is a set of output signals
� T � Q � B (I) � B (O) � Q is a set of transitions. A

transition (s; i; o; s0) is written s
i=o
��! s0

� Sf � S is a set of accept states.

such that for all states 2 S and for all inputsi 2 B (I)
there is at most one transitions

i=o
��! s0 for someo 2 B (O)

and s0 2 S.

When representing a component, a Mealy automaton must
be satisfyS = Sf because all input traces area priori possible.
It must also be complete, i.e. for all statess and all inputsi
there is a transition froms whose guard isi. When modelling
a context, its set of output signals is empty.

Accepted traceand languageare defined as for standard
input/output automata.

Definition (Cost automaton). A cost automaton is a Mealy
automatonhS; s0; I; O; T; Sf i such thatS = Sf , together with
a cost functionC : S ! R which labels each state with a cost.

Cost automata are used to model components. The cost
represents the instantaneous energy consumption.

Notice that energy does not appear on guards of cost
automata. It is consistent with our hypothesis of non-functional
properties: the system does not change its behaviour according
to the energy.

Definition (synchronous product for Mealy autom-
ata). Let A = (SA; sA0 ; I

A; OA; TA; SAf) and B =

(SB ; sB0 ; I
B ; OB ; TB ; SBf) be two Mealy automata.

The synchronous product ofA andB, notedA� B is the
Mealy automaton

(SA � SB ; (sA0 ; s
B
0); IA [IB; OA \OB ; T; SAf � SBf)

whereT is defined as follows:

(qA1 ; q
B
1)

(iA^iB)=(oA^oB)
�����������! (qA2 ; q

B
2) 2 T ,

(qA1
iA=oA
����! qA2) 2 TA ^ qB1

iB=oB
����! qB2 2 TB

We define some functions to observe automata executions.

Definition (States,Out, Cost). LetA be a Mealy automaton
and hA;Ci a cost automaton. Lett be a finite trace defined
on the automaton input signals.
States(A; t) is the sequence of states passed through during

the execution ofA on t. Out(A; t) is the sequence of outputs
emitted during the execution ofA on t.

Let States(A; t) = [s0; s1; : : : ; sn℄. Then
Cost(hA;Ci; t) =

Pn
j=0 C(sj).

The synchronous composition for cost automata is the
standard synchronous composition of the Mealy automata
and an operation of the cost functions. This operation is a
parameter and can be chosen depending on the use case.

Definition (synchronous product for cost automata). Let
MA = hA;CAi and MB = hB;CBi be two cost automata,
and op : R � R ! R be a commutative and associative
operator on real numbers.

The synchronous product ofMA and MB parameterised
by op, writtenMA �op M

B, is the cost automatonMD =

hD;CDi whereD = (S; s0; I; O; T; Sf) is defined as follows
:

� D = A�B

� 8(a; b) 2 S CD(a; b) = CA(a) opCB(b)

In the sequel cost automata will be viewed as weighted
directed graphs.

Definition (weighted directed graph). A weighted directed
graph is a tuplehV;E;wi where

� V is a set of vertices
� E � V � V is a set of edges
� w : E ! R is a weight function.

Definition (weighted directed graph induced by a cost
automaton). Let M = h(Q;Q0; I; O; T;Qf); Ci be a cost
automaton.M induces a weighted directed graph, written
Graph(M) = (V;E) and defined as follows:

� V = S [fvinitg [fvfinalg

wherefvinit ; vfinalg \ S = ;

� (v1; v2) 2 E iff

9i 2 B (I) � 9o 2 B (O) � v1
i=o
��! v2 2 T

� (vinit ; s0) 2 E

� (v; vfinal) 2 E for all v 2 Qf

The weight functionw is defined as follows:

8(v1; v2) 2 E; v2 6= vfinal w((v1; v2)) = C(v2)

and
8(v1; vfinal) 2 E w((v1; vfinal)) = 0

Notice that costs are on states in automata whereas they are
on the incoming edges in graphs. Notice also that graphs have
two particular vertices, the initial and the final ones. It will be
useful to run classical graph algorithms.

We now give the definition of the abstraction relation, first
introduced by Ludovic SAMPER in [1]. As usual abstraction
relations, it sets that both models have the same outputs if
they receive the same inputs, and that the abstract model over-
approximates the detailed one, which means in our energy
context that the abstract model consumes more than the
detailed one.

An originality in Ludovic SAMPER’s work was to parame-
terise the abstraction relation with a set of possible traces, for
which the abstraction relation must hold. The other traces are
considered as unrealistic and nothing is required for them.This
avoids a relevant abstract model to be refused only because the
abstraction does not hold for some unrealistic traces. The set
of realistic traces is calledcontext. We choose to describe it
using a regular language. It is modelled by a Mealy automaton
with an empty set of output signals.

Definition (Context-Based Abstraction Relation). LetMA =

hA;CAi and MB = hB;CBi be two cost automata, andK
a Mealy automaton. We say thatMB is an abstraction model
of MA under the contextK, writtenA �K B, iff:

8t 2 L(K);

8
<

:

Out(A; t) = Out(B; t)

and
Cost(A; t; CA) � Cost(B; t; CB)

IV. D ECISION PROCEDURE

We propose a procedure that decides, given two component
models and a context model, whether one model is an abstrac-
tion of the other one under the context. We explain the idea of
the procedure, before giving elements of the proof. Then we
study the complexity of the procedure and finally explain how
this procedure can be extended to produce a counter-example.

A running example is given in Fig 1.

A. Informal description

We want to compare two component models described by
power state automata. Let’s call the detailed modelA and the
supposed abstract modelB. The context is notedK.

The question is whetherA is an abstraction ofB under
the contextK, written A �K B. We have to check the
two following properties. The output property states that both
component models should have the same outputs if they
receive the same input trace and this trace is an accepted trace
of K. The energy property states that the abstract modelB

should have a greater consumption than the detailed modelA

for all accepted traces ofK.
First, we want to compareA andB with respect to their

outputs and energy consumption, when running with the same
inputs. So the first step is to compose (by synchronous

(a) detailed modelA

(b) abstract model,B

(c) context model,K

Figure 1. Data example

product) them so as to get an automaton which represents
both automata in parallel.

Second, we want to test outputs and energy consumption
only for traces given in the context. To filter relevant paths,
we compose the context with the previous product. Let’s call
the resultP . The product for our running example is given in
Fig 2(a).

Now, we have a unique condensed structureP with all
the information we need. We have to test the two following
properties: for each accepted trace ofP , all transitions along
the path which validates that trace are labelled with the same
outputs forA andB; for each accepted trace ofP , the sum
of all costs collected along the path byB is greater or equal
to the sum forA.

Clearly, we cannot consider each path individually because
the number of paths may be infinite. We have to be crafty and
find an equivalent global property on the automaton, for both
properties.

For the property on outputs, we have to consider all transi-
tions which can be taken while validating a trace, and only

(a) product automatonP (b) graphG induced by the prod-
uct

Figure 2. Structures built to validateA �K B (given in Fig. 1)

these ones. They are exactly the transitions which can be
reached from an initial state and lead to an accept state. So,we
can clean the automatonP , so as to remove all useless states
and transitions, and then check each transition, one after the
other. In the running example, the product of Fig 1 is already
clean.

For the property on energy consumption, we consider only
the difference of instantaneous consumptions betweenB and
A. Now we want to check that for all accepted traces ofP ,
the sum of the differences collected along the path is positive
or null, that isB over-approximates the energy consumption
of A. In other traces, we want to check that no path between
an initial state and an accept state is strictly negative. Wecan
simply run a lightest-path algorithm on the automaton, viewed
as a weighted graph, and check that the lightest path has a
positive weight. The graph for our running example is given
by Fig 2(b).

B. Proof sketch

The proof is organised in successive formula equivalent to
the definition ofA �K B. The last formula is an effective
decision procedure because it is computable.

The data are two cost automataMA = hA;CAi and
MB = hB;CBi, and a Mealy automatonK called context
which recognises a non-empty language. An example of data
is given in Fig 1.

The definition ofA �K B can be written as follows:

8t 2 K
Let

(aj)
j=n
j=0 = States(A; t)

(bj)
j=n
j=0 = States(B; t)

(oAj)
j=n�1
j=0 = Out(A; t)

(oBj)
j=n�1
j=0 = Out(B; t)

In
8j 2 J0; n� 1K : oAj = oBj
andPn

j=0 C
A(aj) �

Pn
j=0 C

B(bj)

1) Product: Suppose that the detailed modelA and the
presumed abstract oneB, as well as the contextK, are
complete. This means that for any states and any inputi

there is a transitions
i=o
��! s0 for someo and s0. If this is

not the case, it is easy to make them reactive by adding sink
states.

Intuitively, this implies that during the parallel execution,
no automaton blocks the execution of another one. More
formally, the following properties hold for the productP =

A�B �K. First, asA andB have only accept states, the
productP recognises the same language asK. Second, for
all executions the output produced by the productP is the
disjoint union of the outputs produced byA andB for the
same trace. The productP for the running example is given
in Fig 2(a).

We want to compare outputs ofA andB on transitions of
P but the product operator gathers outputs in a set. We can
get round this problem by adding primes toB output signals
before building the product, so as to keep all output signals
side by side on the transitions. We introduce an equivalence
functionequivwhich mapsA outputs onB outputs to compare
them.

The definition ofA �K B can be written equivalently this
way:
Let

P = A�B �K

In
8t 2 P

Let
(ajbjkj)

j=n
j=0 = States(P; t)

(oAj o
B
j)

j=n�1
j=0 = Out(P; t)

In
8j 2 J0; n� 1K : equiv(oAj ; o

B
j)

andPn
j=0 CA(aj) �

Pn
j=0 CB(bj)

2) Cleaning:The second step is the cleaning of the product:
we remove states (and transitions) of the productP that cannot
be reached, and those which cannot lead to a final state. Let’s
call ~P the result.

The execution of an accepted trace onP only passes through
states and transitions which are kept in~P . Traces which
are rejected byP are also rejected by~P . So the cleaning
operation does not alter executions on the product. In our
running example,~P = P . It is the case wheneverA, B and
K are clean.

Then we can use~P instead ofP :

Let
~P = cleaning(A�B �K)

In
8t 2 ~P

Let
(ajbjkj)

j=n
j=0 = States(~P ; t)

(oAj o
B
j)

j=n�1
j=0 = Out(~P ; t)

In
8j 2 J0; n� 1K : equiv(oAj ; o

B
j)

andPn
j=0 CA(aj) �

Pn
j=0 CB(bj)

3) Outputs: Let’s focus on the output part of the property:
Let

~P = cleaning(A�B �K)
In

8t 2 ~P
Let

(oAj o
B
j)

j=n�1
j=0 = Out(~P ; t)

In
8j 2 J0; n� 1K : equiv(oAj ; o

B
j)

We do not need to consider every accepted trace, we can
simply consider every transition of the modelP . Indeed, each
transition of ~P is on a path between the initial state and
an accept state, so for each transition, there is at least one
accepted trace passing through it, and then each transitionmust
be such that its output signals are the same forA andB.

For the output part, we have to check:
Let

~P = cleaning(A�B �K)
In

8
i=oAoB
�����!2 T

~P // ~P ’s transitions

oA = oB

4) Consumption:Now, let’s focus on the consumption part
of the property:
Let

~P = cleaning(A�B �K)
In

8t 2 ~P
Let

(ajbjkj)
j=n
j=0 = States(~P ; t)

In Pn
j=0 CA(aj) �

Pn
j=0 CB(bj)

The last line can be written this way:
Pn

j=0(C
B(bj) �

CA(aj)) � 0.
Then we define a cost automatonM ~P = h ~P ;C

~P i where
the cost functionC ~P associated with the product~P is defined
as follows:

8a 2 QA; 8b 2 QB ; 8k 2 QK ;

C
~P (abk) = CB(b)� CA(a)

Now, we want to determine whether there is a trace which
has a negative cost when executed on~P . We want to explore
all paths between the initial state and an accept state, focussing
on the consumption. Note that we are using the non-functional
hypothesis: if there were guards on transitions, some paths
should not be explored.

For sake of simplicity, we construct the graphG induced
by the cost automatonM ~P as defined in the previous section.
The graph for our running example is given in Fig 2(b).

Notice that a path has the same cost (or weight) on the cost
automata and on the induced graph. So we want to determine
whether there is a path onG which has a negative weight.
It is sufficient to find the weight of the lightest path. If it is
positive, then all the other paths have a positive weight, then
the consumption property is true. If it is strictly negative, then
we have a negative path and consumption property is false. If
there is no lightest path (this may happen when the graph has
negative loops), there are paths of arbitrary light weight,then
some of them are negative, then the consumption property is
false.

Thus, for the consumption part, we have to check:
Let

G = Graph(cleaning(A�B �K))

wmin= weight-of-the-lightest-path(G)
In

wmin is well defined andwmin� 0

The work is not finished, because we did not detailed the
procedure that finds the weight of the lightest path. There
are many lightest-path algorithms but their behaviour is not
defined when the graph has negative loops.

If there is a negative loop, it is necessarily reachable from
the initial state and it can lead to the final state because the
cost automaton was cleaned. Then, if some negative loop is
detected, there is a negative path and the consumption property
is false.

Finally, for the consumption part, we have to check:
Let

G = Graph(cleaning(A�B �K))

hhas-neg-loop;wmini = lightest-path(G)
In

not has-neg-loopandwmin� 0

5) Discussion:This is in fact a decision procedure because
both formula on outputs and energy are computable. Indeed,
all the functions we use are computable: product and graph
construction, cleaning and lightest-path finding. Moreover,
visiting all the transitions of~P is feasible because the model
is finite.

C. Complexity

We first focus on the product. In the worst case the states of
a product are the Cartesian product of the states of its factors.
However, in our case, we expect both component models to
be close to each other because they represent the behaviour of
the same component. Then the product of component models
has about the same size as the detailed model. Moreover, we
expect the model describing the context to be small (typically
about 10 states) because it is a simple recogniser written by
hand. Based on these two hypotheses we assume that the
product of the three automata has almost the same size than
the detailed model. Let compute the complexity relatively to
its size.

The construction of the product has a linear cost, and so
has the cleaning operation because it consists in visiting all
states and transitions.

The procedure dedicated to the output property examines
every transition, its cost is also linear.

The one dedicated to the consumption property first con-
structs a graph. Since the graph has almost the same structure
as the product, its construction has a linear cost. Then a
lightest-path algorithm is used on the graph. There are many
such algorithms. To the best of our knowledge, the most
efficient one that we can use in the presence of negative
loops is the Ford-Bellman [5], [6] one. Its complexity is
O(n�m) wheren is the number of states andm the number
of transitions. In the worst case there is a transition between
any two states andm = n2, but in our case, the number
of transitions from a given state is bounded by the number
of distinct inputs that can be received. This number is small
compared to the number of states, thenm = O(n) and the
complexity of the lightest-path algorithm isO(n2).

To summarise, the complexity of our decision procedure is
the complexity of the Ford-Bellman algorithm, that isO(n2).

D. Counter-example generation

As abstract models are built by hand, it would be useful to
get a counter-example of the abstraction relation in case itis
false.

A counter-example consists of a trace in the context for
which either the output property or the consumption property
does not hold.

In case the abstraction is false because of outputs, the
procedure detects a transition with two different outputs.A
counter-example is a trace passing through this transition. It
can be exhibited by finding a path from the initial state to this
transition and another one from it to an accept state. Paths
necessarily exist because the transition belongs to the cleaned
product. These two searches are less expensive than the
lightest-path algorithm and so do not change the complexity
of the procedure.

In case all outputs are the same but energy is not over-
approximated for some trace, we distinguish two cases.

If the graph has no negative loop, the Ford-Bellman algo-
rithm exhibits a lightest path, and it is our counter-example.

Otherwise we would like to find one of the negative loops.
All the lightest-path algorithms we found do not do that. That
is why we slightly alter the Ford-Bellman algorithm to make
it exhibit a simple negative loop. The change is simple. The
standard Ford-Bellman algorithm iteratively looks for paths of
size 1, 2, . . .n� 1 if n is the number of vertices, because in
case there are no negative loop, there is a lightest path of size
less or equal ton� 1 between any two different vertices. To
deal with negative loops, we have to look for paths of sizen,
because a negative loop could go through alln vertices once.
In the nth loop iteration, we remember the transition which
was last used to find a lightest path. This transition is part of
a negative cycle and the procedure usually used to find paths
in the standard Ford-Bellman algorithm can be used here to
find a negative loop, as we proved in [7]. Our extension does
not alter the complexity of the standard algorithm.

Once we have a negative loop, we find two paths as
previously, from the initial state to one state of the loop, and
from it to a final state.

Finally, we can exhibit a counter-example without increas-
ing the complexity.

V. I MPLEMENTATION

We implemented the decision procedure for the abstraction
we proposed in Python [8].

We used the ARGOS language [9] to describe automata and
the ARGOScompiler [10] to compute the synchronous product
of these automata.

Another point is the choice of a lightest-path algorithm. We
need an algorithm which finds the lightest path between two
given vertices and allows for negative weights on edges and
negative cycles. We choose Ford-Bellman algorithm because
it has the smaller complexity. Moreover we managed to alter
it so as to exhibit a negative loop in case there are some, as
described in Section IV-D.

We tested our program with small examples and it worked in
less than one second. We have no doubt that it will be quick for
industrial problems, because our algorithm is efficient andthe
models we have to deal with are quite small. As an example,
hardware component models (e.g. radio) have about 10 states.

VI. CONCLUSION

We have presented an automatic decision procedure for the
abstraction relation which uses graph algorithms to check the
over-consumption of the abstracted model against the detailed
one. In case the abstraction is false, we provide a procedure
to find a counter-example. It can be used to guarantee that
an abstract model, smaller than the detailed one, satisfies the
property of over-consumption. Then the validation algorithm
can use the new model instead of the detailed one. It helps
avoiding blow-up. The procedure is efficient so this gain is
not balanced by an expensive pre-process.

Since Ludovic SAMPER proved the congruence of this
abstraction relation [1], it is possible to use our procedure
on component models. It is useful because it is much easier
to find an abstract model of a small component than one of a
full complex system.

This work can be applied to embedded systems, where
energy consumption is a major issue. Besides, it will be used
to study the worst-case lifespan of wireless sensor networks,
as part of ARESA [11] project.

As a further work we plan to deal with functional properties
in order to study systems whose behaviour changes according
to the quantity of available energy. More complex models to
represent components is a must. We plan to use automata with
some kinds of guards allowed on the edges. The challenge is
to find a tradeoff between the expressiveness of the models and
the efficiency of methods we will apply on them. Concerning
the decision procedure for the abstraction, we will first explore
methods based on abstract interpretation [2]. They are too
heavy for the data we use in this paper but suit the extensions
we consider. Notice that since the composition of component

models with the context model seems unavoidable, the context
model can be enriched as much as the component model
without making the final working structure more complex.

REFERENCES

[1] L. Samper, “Mod́elisations et analyses de réseaux de capteurs,” Ph.D.
dissertation, INPG, 2008.

[2] P. Cousot and R. Cousot, “Static determination of dynamic properties of
programs,” inProceedings of the Second International Symposium on
Programming. Dunod, Paris, France, 1976, pp. 106–130.

[3] D. Cachera, T. Jensen, A. Jobin, and P. Sotin, “Long-run cost analysis
by approximation of linear operators over dioids,”Lecture Notes in
Computer Science, vol. 5140, pp. 122–138, 2008.

[4] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn,
and F. Vaandrager, “Minimum-Cost Reachability for Priced Timed
Automata,” inProceedings of the 4th International Workshop on Hybrid
Systems: Computation and Control. Springer-Verlag London, UK, 2001,
pp. 147–161.

[5] R. Bellman, “On a routing problem,”Quarterly of Applied Mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[6] L. R. Ford, Jr. and D. R. Fulkerson,Flows in Networks. Princeton
University Press, 1962.

[7] L. Lugrin, “Using Abstraction for the Validation of Non-Functional
Properties,” Master’s thesis, UJF, 2009.

[8] “Python,” http://www.python.org/.
[9] F. Maraninchi and Y. Ŕemond, “Argos: an automaton-based synchronous

language,”Computer Languages, vol. 27, no. 1/3, pp. 61–92, 2001.
[10] D. Stauch, “Compilateur Argos,” http://www-verimag.imag.fr/�altisen/

DSTAUCH/ArgosCompiler/.
[11] “A RESA,” http://aresa-project.insa-lyon.fr/.

