
A parallelization model for embedded applications
Master student: Jerome Reybert�y

Supervisors: Jean-François Mehaut�, Miguel Santanay and Carlos Prada�y
� Mescal, Avenue Jean Kuntzmann, 38330 Montbonnot-Saint-Martin

y STMicroelectronics, 850 r Jean Monnet 38920 CROLLES

Abstract—The previous years have seen an important evolution
in the embedded system domain, with the apparition of multi
processors and multi cores architectures. For the moment, these
architectures are embedded specific, built with one processor and
several accelerators around it.

The next ones will be based on many processors and core/accel-
erators. The software development should change as developing
for a parallel system is completely different from a mono
processor one. Furthermore, the software directory of industries
such as STMicroelectronics must be adapted, in order for the
applications to benefit all the available computing power of multi-
core systems.

We propose to define a simple methodology to manage the
parallelization process of sequential and embedded applications.

I. I NTRODUCTION

Embedded systems manufacturers must now evolve to
multi-processor and multi-core architectures. The whole cata-
log of their software should be able to exploit these parallel
architectures. It is impossible to rewrite all of them from
scratch. The held approach is to begin from the sequential
source code, and to transform it into a parallel version: to
parallelize it.

Parallel development needs important and specialized devel-
opment skills. For instance, developers specialized in image
processing, should not have enough expertise to parallelize
efficiently themselves their algorithms. Two alternativesexist:

� to provide to image processing experts some tools to give
them a simple parallelization method.

� to give the opportunity to a parallel expert an opportu-
nity to parallelize an algorithm in a domain he is not
comfortable with.

Moreover, embedded system domain is confronted to many
specialties: signal processing for communication applications
and video processing for compression / decompression are
common examples. The upcoming computation resources pro-
vided by the parallel processing appearing technologies open
the opportunity to new domains such as security : finger print
recognition, face recognition. . .

It seems difficult to hire one expert for each cited previous
domains. Moreover, even if we can provide them efficient
parallelizing tools, they should as well be aware of specific
parallel programming characteristics. For this work, we are
interested in the other solution: a parallel system expert,work-
ing on all these various domains. He can not understand all
the specialties he will face. We must give him the opportunity

to parallelize the code without having a deep understanding
of this one.

This article is structured as follows. In section II we briefly
present existing tools to observe sequential code and section III
shows techniques to implement parallel code. Then in section
IV we propose our methodology to manage the parallelization.
Section V presents an example of parallelization followingour
methodology. The section VI gives a conclusion.

II. U NDERSTANDING AND OPTIMIZING PERFORMANCE

A. The existing observation techniques

There are several techniques and tools to gather information
about the execution of a program. The different techniques
can be gathered in four categories:1) source code2) compiler
3) binary translation4) sampling techniques .

Intrusion: This point must be taken into account to
compare the analysis tools. The resulting data is important
but we must also consider the intrusion aspect of the
observation. Too much intrusion can disturb the program
execution and produce erroneous observation. This intrusion
must be carefully thought, especially when the source code is
instrumented manually. If we use existing tools, the intrusion
should have been already thought. In this case the intrusion
should be predictable, and in some cases, corrected.

We are now going to compare the different techniques.
1) Source code:Gathering information in order to under-

stand the program behavior is a common task that every
programmer has already done since he is a student. The
common error is trying to gather all the information manually.
It will seem the easiest way, using well known primitives
as “gettimeofday” and “printf”. However, the developer is
confronted to several problems:

heterogeneous hardwareFrom one specific platform to
another, counters accesses can be completely different.
The access method to the counters should be rewritten
for every platform.
data representation The way to save and present the
gathered data is important. Maybe the programmer will be
satisfied by the form of its traces, but it will be difficult for
the other to read it. A specific format implies to develop
the visualization tools for this given format.

As we can see, reinventing the wheel each time we want to
trace a program execution can have important consequences.
There are some tools which can help the developer to gather
information:

PAPI : Performance Application Programming Interface,
PAPI provides predefined high level hardware events
summarized from popular processors and direct ac-
cess to low level native events of one particular
processor. PAPI is fully portable to a large number of
architectures. But it does not solve the trace format
problem.

TAU : Tuning and Analysis Utilities[1] is a set of tools
providing easy ways to settle timers. TAU provides
simple accesses to PAPI events. TAU is a good choice
for manually tracing an event, as we don’t have to
worry about memory and files. It also provides a
standard format for the traces. The resulted traces
can be used in some visualization tools. TAU also
provides some trace format converters, in order for
the traces to work with several visualization tools.

OTF : Open Trace Format is is an XML standard format
for traces. Developed for tracing parallel programs, it
fits the sequential requirements, and is still in active
development. To use this format will make the traces
portable among several visualization tools.

Some events are too specifics to be automated, that’s why
manual tracing is still important. But for most of the events,
tracing becomes quickly a repetitive task. We will see that an
implicit tracing can be used for a majority of primitive events.
Furthermore, getting a global point of view of the application
seems unrealistic, tracing this one manually.

2) Compiler: As a program can be very large or very
complex, to understand the program reading the source code
might not be suitable. It is even more difficult if you are not
familiar with the project. The goal here is to dissect the total
execution time among all the functions. Locating the parts
where the program spends most of its execution is a good
start. The idea is simple, to start a timer at the beginning of
each function and to stop this timer when the function returns.

Bell laboratories early began to work in this direction,
adding a tool named prof[2] in UNIX system. Rather than
recreating a tool to parse and analyze the source code, this
tool is located in the compiler. During the compilation process,
timers are placed at the beginning of each functions, and
before each return statement. This work is made easier thanks
to the parsing already made by the compiler. During the
execution, each time the program steps into a function, the
relative counter is incremented and the timer starts. When
the execution flow exits this function, the time spent in this
function is added to the total execution time of this function.

prof has then been improved intogprof[3]. In early 80’s,
a team working on Unix had some problem understanding
the time spent in some functions, as these functions where
primitive ones, and called from different places in the program.
The global time spent in a function was not relevant enough.
Instead they preferred to split this time among the different
places from where the function was called. A more complete
description of gprof is done in a following chapter.

TAU, used with the framework Program Database Toolkit
(PDT[4]), is able to analyze the source code. Using compiler

information, it adds some profiling routines. TAU and PDT
are more complex than gprof to settle, but is more tunable in
return.

This kind of trace is not so intrusive. The memory accesses
are limited, as the profiler does not collect all the times spent
into the functions, but just a sum of each. Furthermore, these
times are stored into hashtables. The access time to a particular
counter function does not consume too much.

Some can say that adding some instrumentation code could
produce observation bias. As it adds function calls, it could
change the way the compiler applies its optimizations. In our
case, profiling for parallelizing, we are not expecting so strict
analysis. On the contrary, we would rather compile without
optimizations.

Furthermore, to produce profile like this is very simple.
Most of the time, simply add an option into the compiling
command line is enough (the option for gprof in gcc is-pg).
gprof is often a good start to discover a program.

3) Binary translation: The program can also be profiled in
its binary form, without having to compile it with profiling
methods. At a first glance, it seems a valuable method only
for programs which we do not have the source code. But as it
would be useless, we will see that this technique brings other
opportunities. To profile an application in a binary form can
be done in two ways: statically or dynamically.

a) Static: There exists some tools as MAQAO[5] which
are able to extract knowledge from a compiled program. The
idea here is to parse the assembly code. This restrict the tool
to analyze code for a specific platform, and even compiled by
a given compiler. In the case of MAQAO, it works with Intel
platform binary code, compiled with ICC. Static analysis can
begin to extract call graph, control flow graph, list the loops
and so on. With all that information, some analyzes can already
be done.

But static analysis often provides irrelevant results. e.g.
statistics about branches are only statistics. Caches effects
are not predictable. MAQAO sticks up to fill the gaps with
dynamic analysis. It will insert some instrumentation code
directly into assembly code. To profile at this level allows
to access to interesting values: function parameters, addresses
used in load/store instructions. . .

In binary translation, and in all other form of profiling,
static analysis can not be enough. The good aspect here is
to use results of both static and dynamic analyzes. Moreover,
there are good ideas, such as observing the distribution of
parameters values for each function. However, this tool is
clearly dedicated to profile an application in order to to
optimize the sequential version. Furthermore, we are restricted
to a given platform and compiler.

b) Dynamic: Intrusion during execution can modify the
results: the trace functions added, the resulted disturbation
during the optimization phase of the compilation, the access
to the memory to store the trace results, . . . As we can try to
minimize this as much as possible, it will never be possible
to reduce the intrusion to zero. Another considered solution is
to simulate the execution and do all the trace work into the

simulation.
Here, the tool is a kind of virtual machine dedicated to

tracing, using just-in-time compilation techniques. As the
execution is emulated, the resulted overhead does not disturb
the execution itself. The most famous tool isValgrind[6]. The
conception of this tool allows the creation of external ones:

� memcheck for memory allocation profiling (in order to
spot invalid allocation or deallocation)

� helgrind, tool capable of detecting race conditions in
multithreaded code

� cachegrind[7], and its evolution callgrind, able to produce
impressive call graph, to profile instruction cost and cache
misses.

Virtual machine trace tools are very powerful. Thanks to the
simulation side, it is possible to get very precise information,
for instance about caches, number of primitive instructions per
line. These informations are difficult to gather when executing
on a real platform, as all these counters can be accessed in
different ways depending on the platforms, in the case they
exist. The simulation of an execution will be exactly the same,
no matter the platform. Furthermore, the traced execution is
not disturbed at all, as the tracing instructions are embedded
in the simulator. The downside is that there is a huge overhead
for the real execution time. Depending on the options passed
to the simulator, the execution time can be 20 times to 200
times longer.

4) Sampling technique:All the following techniques alter
the source code, or the binary code in order to extract some
information. They insert some special code at he beginning and
the end of the methods, with timing information, to profile it.
Another way to profile an execution is to sample it. A sampling
profiler observes the program counter at regular intervals.The
results are not numerically exact, but a statistical approxima-
tion. It could seem to produce less interesting results. Butin
practice, these results are more accurate:

� this profiling method is not intrusive to the target pro-
gram, and do not produce side effects as memory cache
misses or breaking code pipeline

� it does not over-evaluate small and often called functions
� the program can run at nearly full speed

As this kind of profiler works at a close level with the
hardware, the tools are often hardware related:VTunefor Intel,
CodeAnalystfor AMD, Shark for Apple. Other tools can be
used without platform concern, asOprofile[8].

5) Discussion:Two aspects must be considered to choose
the appropriate analysis tool:1) the efficiency of its analysis,
i.e. the trace tool should not be too intrusive and in the same
time provide accurate analysis;2) the utilization should not
require too much effort, in order to not to spend too much
time in the analysis phase. Valgrind is a good candidate, as
it fills the two preceding points. Even if the simulation can
take a long time, the execution is not disturbed by the tracing
tool. Furthermore, the program can easily be traced without
any modification.

B. Parallel programming model

We have seen in the previous section how to analyze a
sequential program in preparation for its parallelization. There
are lots of techniques to implement a parallel program. In this
part we will discuss some of the existing solutions.

1) How to express parallelism?:A parallel programming
model is a set of software technologies to express parallel
algorithms and match applications with the underlying parallel
systems. It encloses the areas of applications, languages,
compilers, libraries, communication systems, and parallel I/O.
The targeted architecture is important, as the tools, and even
the programing design depends on this.

It must be noted that the final implementation will be done
using specific embedded system API. For our approach, we
prefer to firstly implement on general purpose architecture, in
order to simply implement, test and debug them. Once the
parallel algorithm is approved, it is transformed in order to
work with embedded system API.

The targeted architecture here is SMP (symmetric multi-
processing); this architecture involves a multi-processor or a
multi-core computer where two or more identical processors
can connect to a single shared main memory through a bus. In
this part we will only consider SMP parallelization solutions.

a) Language specific:Parallelism can be expressed in
several ways. Specific languages have been designed for
parallel programing such as Ada or Cilk[9]. But language
specific can not be considered, as most of the embedded
systems software source code is written in C.

b) Auto-parallelization: There exists a large literature
about auto-parallelization. Both popular compilers GCC[10]
and Intel compiler try to implement auto-parallelism. The idea
here is, with a simple compilation flag, detect parallelism
opportunities in sequential source code and provide a multi
threaded application. However, the analysis provided by these
parallelizer is only static. It has been shown[11] that, in agen-
eral manner, static data dependence analyzers are not powerful
enough to prove that some loops are data dependences free on
large programs.

Other works such as Thread Level Speculation[12] or Au-
tomatic Profile-Driven Parallelization[12] provide a dynamic
data dependence analysis. TLS has an interesting approach.
The source code is instrumented during the compilation. It
introduces an “executable intermediate representation”:that
means the profiling is more aware high level code (like loop
definition) and data structures. The program is executed several
times, with multiple input datasets. For each execution, the
profiler generate a trace file, which is analyzed to detect data
dependences. If there are code regions which can not be
disambiguated by this analysis, the program is recompiled.
The instrumentation is done more finely on the disambiguated
areas. Once the program has been fully inspected, OpenMP
directives are added for areas which have been approved to be
parallelized.

But this kind of tools are still in research area. Their
efficiency is not proved, and it is hard to find implementations.
However, this lead should give results in the next years.

ExecutionExecutableLinkerObject codeCompilerSource codePrepocessorSource code

ValgrindProfiled malloc libraryTAU timers TAU PDT

Hand added PAPI

Personnal library

gprof

AOP

MAQAO

Fig. 1. An overview of the existing possibilities to add profiling and tracing methods during the program life.

2) Software programming language:In the prospect of
C programming, we will present existing APIs. The most
famous is certainlypthreads[13], the POSIX thread standard
for threads. It is available for Unix systems, but also for
Microsoft Windows withpthreads-w32. It is a low-level in-
terface that allows users to create and manipulate threads
(lightweight processes). All the threads of a single process
share the same address space which does not need any
explicit communication. On the other hand, it is the user
responsibility to protect variables from concurrent accesses
with synchronization mechanisms (monitors and conditions).
Programing with pthreads is not very difficult. However, even
to achieve simple tasks, coding turns out to be difficult and
repetitive.

a) OpenMP: OpenMP[14] is an easy-to-use paralleliza-
tion portable interface which is based on a shared memory
approach. Programming with OpenMP consists in inserting
directives to the sequential code. Theses directives are used
by the compiler to generate the parallel code for the pro-
cessors and cores. Its closeness to sequential programming
makes it wildly used for parallelization of existing sequential
algorithms.

The section of code that is meant to run in parallel is marked
accordingly with a preprocessing directive. At this point,the
main thread forks into a defined number of threads. Each
thread run concurrently. After the execution of the parallelized
code, the threads ”join” back into the master thread, which
continues onward to the end of the program. The number of
threads can be defined before the execution or specified for a
specific parallel region in the source code.

Two kind of parallelism can be defined with OpenMP.

� Data parallelism: this kind of parallelism often appears
into loops. A simple example is a for loop doing calcula-
tion on a matrix. The matrix is split into several memory
areas, and each thread will execute the same code on its
own memory area.

� Task parallelism: in a parallel region, we define several
tasks to run jointly. Each thread will execute independent
code.

For these parallel regions, it is possible to define more
precisely the OpenMP compiling behavior. We can specified
which variable areprivate and shared among the threads.
A data parallelism region can be scheduled in aa) static
way, which means the memory is split intochunksamong
the threads before the loop execution. There are as many
chunks as threadsb) dynamicway, here the chunks are smaller.
There are more chunks than threads. When a thread finish
to compute a chunk, it gets another one. It is designed to

minimize load balancing issuesc) guided way, which looks
like to the dynamic scheduling. The difference is that the first
allocated chunks are bigger, and the next are smaller to smaller.
This scheduling can be even more efficient for load balancing
issues.

OpenMP also offers some directives to easily specify par-
allel behaviors likecritical sectionor barrier.

It can be noticed that OpenMP is implemented in popular
compilers such as GCC or Intel compiler. It allows to simply
compile OpenMP directive adding a flag during the compila-
tion.

3) How to check parallelism?:Data races and dead locks
are notoriously hard-to-find threading errors. Such unsynchro-
nized memory reference causes non-deterministic behaviors.
Usual debugging tools are inefficient to detect such problems.

Such tools are today available. Helgrind[15] is a thread
debugger which finds data races in multithreaded programs.
It looks for memory locations which are accessed by more
than one thread, but for which no consistently used mutex
lock can be found. Such locations are indicative of missing
synchronization between threads.

Another one is Intel Thread Checker[16]. Thread Checker
is involved at different phases. Compiling a source code with
icc and the flag “-tcheck”, Thread Checker instruments
the code during the compilation. Then, the application is
executed withtcheck_cl command. This program firstly
instrument the binary code, then supervise the execution. It
instruments every memory reference instruction and every
thread synchronization primitive in the program. When the
instrumented program is executed, the runtime analysis engine
monitors every memory reference event and every thread
synchronization event and analyzes if there is a data races.
Thread Checker supports Posix Threads and OpenMP. The
drawback is that to benefit all the Thread Checker features,
the source code must be compiled withicc. Some modification
for the compilation may be needed in order to be compatible
with icc.

4) Discussion:We have seen that automatic tools are still
not mature enough to provide industrial results. OpenMP
seems to be a good compromise: it is simple to express
parallelism, widely available, and the OpenMP behavior is
simple to reproduce with native thread API. An interesting
lead may be to extract the intermediate code produced by the
OpenMP. It could make the translation work to native thread
easier. If some problems are encountered during the parallel
execution, the use of tools like Intel Thread Checker is really
encouraged.

III. D EFINITION OF A PARALLELIZATION METHODOLOGY

We are now able to trace the execution of a sequential
softwares, with tools such as Valgrind and TAU. We can
extract from these traces information to point out on which part
of the source code we must focus in order to parallelize this
software. We have also seen solutions to implement parallel
algorithm.

A methodology must be defined to efficiently use these
tools, and manage the process of parallelization. This method-
ology is inspired from software engineering discipline. This
connection between software engineering model and parallel
programing has been first discussed in a white paper from
Intel[17]. We will first briefly present some of the development
models defined by the software engineering. Then, we will
transpose this method for our parallelization problem.

A. Software engineering models

There are lots of methodologies to manage a project. This
subject is still an open software engineering topic. A methodol-
ogy can be defined as a framework. This framework defines the
stages involved in the development of the software: in which
order should we consider the stages? when can we tell that a
stage is completed? how to make the transition between two
stages? what could force us to go back to the previous stage?
The first related framework to manage software development
has been proposed in the 70’s by [18].

A standard framework for developing software consists on:
requirements capture: This task’s goal is to determine
the requirements for a new system or to modify an
existing one. This step must take into account the possible
conflicts which could exist between different stakehold-
ers. Requirements capture is a critical step to the success
of the project.
analysis: All the requirements are analyzed, classified.
The road map of the project is defined, as well as the
required work team. The platform and the programing
language are chosen during this phase.
design: After software’s purposes and specifications are
determined, software developers will design a plan for a
solution. It includes low-level component and algorithm
implementation issues as well as the architectural view.
implementation: The purpose of programming is to
create a program that exhibits a certain desired behavior
(customization). The process of writing source code often
requires expertise in many different subjects, including
knowledge of the application domain, specialized algo-
rithms and formal logic.
testing: Software Testing is an empirical investigation
conducted to provide stakeholders with information about
the quality of the product or service under test, respecting
the context in which it is intended to operate. Software
Testing also provides an objective, independent view of
the software to allow the business to appreciate and
understand the risks at implementation of the software.
deployment and maintenance:Deployment starts after
the code is appropriately tested, approved for release and

sold or otherwise distributed into a production environ-
ment. It may be necessary to add code that does not fit
the original design to correct an unforeseen problem or
fill a customer request.

There are several ways to order these steps. The basic one
is the Code-and-fix model. Actually, it is more an absence
of model. The developer just codes an initial version of the
application, doing the analysis at the same time, and fixing the
problems when he encounters one.

The first well designed model has been thewaterfall model.
To follow the waterfall model, one proceeds from one phase to
the next in a purely sequential manner. For example, one first
completes requirements specification, which are set in stone.
When the requirements are fully completed, one proceeds to
design. The waterfall model is argued by many to be a bad idea
in practice, mainly because of their belief that it is impossible,
for any non-trivial project, to get one phase of a software
product’s life cycle perfected before moving on to the next
phases and learning from them.

Another one isiterative development: it slices the deliver-
able business value (system functionality) into iterations (also
called increments) at the beginning of the project. In each
iteration a slice of functionality is delivered through cross-
discipline work, starting from the model/requirements through
to the testing/deployment. This model is more flexible.

Our methodology has been inspired by this iterative model.

B. Parallelizing model

To parallelize a software is a new form of coding. A
“classical” project often begins from scratch, or using libraries.
In some cases it can work upon an existing software, in order
to add some functionalities or correct some errors. In our
case this is different. We do not want new functionalities, the
program is supposed to fulfill the requirements.

As there are not already any efficient tool to detect and
correct data dependencies, we must adopt acode-and-test
approach. Using this approach without any road map improves
the risks of failure. This is the main reason to define a software
development model. Our model is inspired by theiterativeone,
with an implementation - testing - debugging phase flighty
different.

1) Requirements capture:This step does not have the same
importance as in a classical project. As the software already
exists, we don’t have to define its requirements. The main
requirement remains the same, to improve as much as possible
the resource utilization on a multi-core platform.

2) Analysis:The analysis is done on the sequential version
of the code with the performance analysis tools presented in
section II in order to discover hot spots. They will represent
the different iterations of the development cycle. We must also
try to define the maximum reachable speed up. We will use for
that the Amdahl’s law, that can give us the maximum speedup
from the portion of sequential code. The goal here is not to
reach the maximum theoretical speed up. It can help us to
understand the parallelization. If the theoretical speed up is
low, we can not pretend to obtain good performances.

3) Design: There are some typical patterns in the source
code for the parallelization design. Some of these patternshave
been presented in section III. The call graph produced during
the analysis iteration can give us interesting leads. The higher
in the tree we will try to parallelize, the better should be the
performances. On one hand, overhead dues to thread creation
and barrier are less important. On the other hand, the risks to
have data dependencies are higher.

During this phase, we must evaluate if the thread manage-
ment overhead is covered by the execution time spend into the
parallel region.

4) Implementation:The implementation, as discussed in
section III, can take several forms. In the first iteration
of the development cycle, we will use OpenMP. OpenMP
offers very simple ways to implement parallel code. As a
downside, performances may be worst than with native thread
implementation, aspthread. Our goal here is to test a design.
Once a design has been approved, it can be implemented with
low level techniques. This is discussed in the enhancement
iteration.

If the parallelization seems too difficult, involving too much
changes in the algorithm or if the debug iteration shows that
the data dependences are too strong, it should be considered
to go back to the design iteration, and rethink it, going upper
in callgraph tree.

5) Testing and debugging:The parallel implementation
is then executed. For this phase, test unit sets are really
important, to ensure the produced data is correct.

The number of cores used for execution is not defined. The
more threads are running, the better are the chances to reveals
parallel problems. There can be grouped in two categories.

data races: they arise in software when separate processes
or threads of execution depend on some shared state. Op-
erations upon shared states are critical sections that must
be atomic to avoid harmful collision between processes
or threads that share those states.
deadlocks: it refers to a specific condition when two or
more processes are each waiting for each other to release
a resource, or more than two processes are waiting for
resources in a circular chain.

Tools such asThread CheckerIntel tool improve greatly
the research and the resolution of bugs such as data-races,
deadlocks situation and so on.

6) Enhancement:This iteration has been added from the
classic software engineering model. Once the testing and
debugging iterations are successfully completed, we can try
to optimize some parts of the parallelization code, using for
example native thread mechanisms. Reproduce an OpenMP
behavior should always be possible.

In the case of embedded system, a program can not be
compiled with OpenMP. It makes this iteration obligatory. It
seems better in this case to consider this iteration once allthe
increments have been successfully parallelized.

7) Discussion:The iterations are now defined. We present
them in a more comprehensive way in figure 2. This diagram
shows more explicitly the interactions between the iterations.

Fig. 2. Software development model for parallelizing project

As we can see, the definition and the analysis are made only
once, at the beginning of the project. The analysis iteration
defines the increments. These increments are managed one by
one, supposing that they are independent. For each increment,
we begin by trying naive approach, then we observe how the
program behaves. In some cases, we should reconsider the
design. Once the program is correct, we can go to the next
increment, or try to enhance the current one.

IV. A PPLICATION OF THE METHODOLOGY ON AN

EMBEDDED SYSTEM SOFTWARE: TNR

TNR means Temporal Noise Reduction. The goal of this
application is to reduce the noise on all the frames composing
a video stream, taking into account some temporality.

A. Presentation

1) What is denoising:Noise is often present on video
image. This noise can have several sources. It can come from
the capture of the video like random brightness variation or
color information produced by the sensor of a digital camera. It
is also present on analog image recorded with a photographic
film having a too high light-sensitivity. Noise can also appear
during the compression of the video and the transmission of
the data.

All this noise is unwanted as it deteriorates the image
quality. But cleaning noise means removing information. Ap-
plying a too rough denoising method could alter the image,
loosing some information, making it blur. It is also important
to provide a certain consistency between the different frames,
to prevent some video blinking effects.

2) Spatio-temporal noise reduction:Spatio-temporal de-
noising, as it is written, means denoising using two factors:
space and time. The spatial denoising is the classic method.
It consists in analyzing an image by looking for important
differences between pixels and its neighbors. When it finds
a pixel with an high contrast comparing to its neighbors, it
applies a transformation to the color of this pixel, about the
mean of the neighbors color. Spatial denoising is applied on
each video frame as independent images.

The temporal denoising is the next step. We perform a
motion detect filter and a temporal filter on a frame, taking into
account the adjacent frames. To simplify, we get the previous
denoised image, and apply it to the current image like a filter.
On the actual image, we will perform the spatial denoising,
taking into account the previous image filter. It allows to apply
almost the same denoising method on this image, limiting a
blinking effect.

3) STMicroelectronics implementation:The TNR applica-
tion must be seen as a part of a larger program for video decod-
ing. In embedded systems, it is between the video decoder and
the output stream. The version used for the parallelizationtest
is a standalone one. It means it can be compiled and executed
on a computer. The input streaming (coming from the decoder)
and the output streaming are simulated as reading and writing
files on the hard disk.

The TNR application takes as input parameters the path
where images to be denoised are stored, the path to store the
denoised images, and the number of images. Each single image
is stored in 3 different files: one file for each channel Y, U and
V. This behavior reflects how the program works in the global
decoding software. The images to be denoised have already
been decoded (e.g. by an H264 algorithm). The image is not
compressed at all, in broad outline1pixel = 1otet. For a
video, each file will have the same resolution and the same
size. This should produce a predictable execution.

For each image, the program will work on even then on
odd lines, as two separated and independent images. As there
is not complete documentation about the TNR application, we
only can guess why the denoising operation is split among the
lines. We can deduce that this denoising algorithm is done for
an interlaced video (like common analog television signals).
The result should be better for this kind of output.

B. Use of the model

The previous documentation work has been done to present
the TNR algorithm in this paper. We must consider that the
developer in charge of parallelizing such program has not this
information.

1) Requirements capture:TNR is a well known STMicro-
electronics algorithm. The goal here is not to reach extreme
performance, but to show the validity of our parallelization
model. The second objective is of course to obtain the same
denoised image quality. As it is difficult to judge the image
quality, we want the exact same images. We will test the
resulted image set, comparing byte per byte withdiff tool,

 0

 2000

 4000

 6000

 8000

 10000

estimate_noise temporal_noise spatial_noise motion_detect fading bypass

ex
ec

ut
io

n
tim

e
(in

 m
ic

ro
 s

ec
)

Fig. 4. The execution time among the iterations seems to be stable for each
function.

these images with an image set produced by the sequential
version.

2) Analysis: We begin by tracing the sequential version of
the program. For that, we prefer to use Valgrind. As we have
seen above, Valgrind is preferred because it is not architecture
or compiler dependent, and measurements are still accurate.

We executeTNR with a set of 41 images. The result
of this execution is presented in figure IV-B2. Nearly
all the execution time is spend in 6 functions:bypass,
estimate_noise, temporal_noise_reduction,
spatial_noise_reduction, motion_detect and
fading. This kind of callgraph form suggests us that these
6 functions are executed ones after the others in a loop. There
are called from one function,c9nr_top. This should make
the parallelization easier, as the 6 consuming functions are
called in the same function.

We can notice thatc9nr_top is called 82 times, whereas
there are 41 images. A further look into the code shows us that
the image file is split into two buffers: one for the even lines,
and another one for the odd lines. It is difficult to guarantee,
but it seems that the computation is independent for both
buffers.

We can extract an interesting information from this call-
graph. There is the execution time passed in each function
(in percentage) according to the total execution time. We can
deduce from it that a naive approach should have poor results,
because the load balancing would be a disaster among the
functions.

We tried to measure more accurately the execution time
of the 6 functions among the iterations. The results of this
trace are shown in figure 4. We can observe that among the
82 iterations, the execution time of each function is stable,
except maybe for thefading function. However, this stability
is a good sign for the parallelization, as the execution is
predictable. We will see the consequences for the design in
the next paragraph.

As we only focus on thec9nr_top function, we can
ignore the time taken by processes like loading and stor-
ing the images. We can not parallelize these processes, as

Fig. 3. The result of the TNR execution traced by valgrind. The 6 main functions appear clearly as leaves.

they represent the data transmission in the real situation
(in the embedded system). We can now almost distinguish
the parallelizable sections and the one they can not be: the
parallelizable portion is almost 95%. Thanks to the Amdahl’s
law, we can predict the maximum reachable speed up for 8
processors:

Speedup(8) = (1� 0:95) + 8 � 0:95 = 7:65

The goal here is not to reach at any cost this maximum speed
up, but to give a better comprehension of the parallelization.

3) Design, implementation, test and debug:As it has been
discussed previously, the higher in the callgraph we try to
parallelize, better should be the performances. Indeed, we
minimize the overhead effects of thread creations. In this
paragraph, we will present the different approaches we tried,
and try to explain why they failed.

a) Parallelizing among the images:The higher we can
try to parallelize is at the level ofc9nr_top call. This
function is mainly composed of a for loop. Each iteration of
this loop represents one frame of the video. The easiest way to
parallelize it should be to denoise several images in the same
time. Before to spend a long time reading the source code,
we can easily try to parallelize. Trying to understand the data
dependences here is really a hard work. There are about 20
pointers. It is not obvious at all how the pointers are allocated
from one iteration to the other.

The implementation is easy. We add#pragma omp
parallel for just above the main loop. Then, we move
the declaration and the allocation of the pointers which will
contain images data inside the for loop. It will produce an
overhead due to the memory allocation for each iteration, but it
is a simple way to firstly test our implementation. The resulted
performance are satisfying, knowing the overheads due to the
memory allocation.

However, the tests are negatives. There are binary differ-
ences between a denoised images produced by the sequential
algorithm and one produced by the parallel algorithm. Looking
further, we can notice that the first produced image does not
have any differences. This points out one of the main problem
for parallelizeTNR. As it is a spatio-temporal denoiser, the
algorithm takes into account the previous image, but the
previousdenoisedimage. This is explained in the figure 5.

This data dependence is very strong, as we must wait for the
previous image to be generated (i.e. the previous image must
have been processed by the last of the 6 functions) before we
can begin to compute the next image. Even a pipeline design
(described in figure 5) is not possible.

Fig. 5. A pipeline design. There exists a data dependence problem among
the frames. To denoise a frame, we need the current frame and the previous
denoised one.

b) Parallelizing among the denoising processes:Then
we tried to naively parallelize the 6 time consuming functions.
We call thismassive parallelization. This design is presented
in figure 6. Each function is seen as a task, and these task can
run in parallel for each iteration.
#pragma omp p a r a l l e l f
#pragma omp t a s k

f a d i n g (. . .) ;
#pragma omp t a s k f
�pucNLE = e s t i m a t e n o i s e (. . .) ;
m o t i o n d e t e c t (. . .) ;
g

#pragma omp t a s k f
t e m p o r a l n o i s e r e d u c t i o n (. . .) ;
t e m p o r a l n o i s e r e d u c t i o n (. . .) ;
t e m p o r a l n o i s e r e d u c t i o n (. . .) ;
bypass (. . .) ;

estimate
noise

estimate
noise

temporal
noise

reduction

spatial
noise

reduction

motion
detect

fading

bypass

fforeach frame

F
or

k

B
ar

rie
r

read original
frame f

write denoised
fframe

Fig. 6. A naive massive parallelization design. It must be noticed the strong
existing barriers, from where load balancing problems couldappear.

bypass (. . .) ;
s p a t i a l n o i s e r e d u c t i o n (. . .) ;
g

g

We can predict that the performance should be quite poor.
Regarding to the sequential analysis (see figure IV-B2), the
6 functions does not have the same execution time average.
As it has been discussed above, the load balancing should
be bad: the threads should all wait for the thread executing
fading for each iteration. We can try to distribute in a
better way the load, aggregating the functions in order for
each thread to take about one third of the execution for each
execution (see pseudo code example in 6). However, this
kind of parallelization is very architecture dependent. Here, it
could be efficient with 3 computation units.

Trying to implement this design, we faced a second data
dependence problem. There is a strong dependence between
almost each functions. Each function take into parameter one
or several results from previous functions. This involves that
a given function must wait that the previous function finish
its execution; moreover, they must be executed in the right
order. There could be a solution, where the next function
can work on already denoised areas in the image. But this
solution involves a long expertise of the source code, and a
very hard implementation.

This naive solution seems not feasible.

c) Fine grain: As the previous approaches did not work,
we must work deeper in the callgraph. The next level in
the callgraph is the last: we work now at theleaves stage.
The parallelization will be designed inside the 6 denoising
functions.

All the functions have the same pattern: anested for
loop. These nested loops work on the image matrix, applying
primitive calculation on each cells. A first look into these loops
let us think that each iteration should be independent. This
assumption will be confirmed by the test phase.

We present here the parallelization for the simplest of the
6 functions, temporal_noise_reduction. The paral-
lelization directive is applied to the outer loop. OpenMP isable
to efficiently parallelize a nested loop like this. Parallelizing
the inner loop would be a very bad design, generating a huge
overhead for the multiple thread creations.

Listing 1. Example of a parallelized loop in TNR program
#pragma omp p a r a l l e l f o r
fo r (y = 0 ; y < u lY InS ize ; y++) f

f o r (x = 0 ; x < u lX InS ize ; x++) f
P = � (pucPPBuf + y � u lX InS ize + x) ;
C = � (pucCBuf + y � u lX InS ize + x) ;
� (pucOutBuf + y�u lX InS ize + x) = (U8) ((C � (

32 � u lTempFactor) + P� (u lTempFactor) + 16)
>> 5) ;

g
g

d) : Tests shows that something is wrong. As described
in paragraph IV-B3a, there are differences in the denoised im-

i n t t a b [s i z e i] [s i z e j]
f o r (i = 0 ; i < s i z e i ; i ++)

f o r (j = 0 ; j < s i z e j ; j ++)
t a b [i] [j] = . . .

i n t t a b [s i z e i] [s i z e j]
f o r (j = 0 ; i < s i z e i ; i ++)

f o r (i = 0 ; j < s i z e j ; j ++)
t a b [i] [j] = . . .

TABLE II
COMPARISON BETWEEN GOOD AND BAD NESTED LOOP IMPLEMENTATION.

MEMORY ACCESS TO THE MATRIX IS DONE BYTAB[I][J]. THIS IS

EQUIVALENT TO (*TAB + I * SIZE_J + J)

ages. TNR application is then executed with Thread Checker.
A brief overview of the results are shown in table I.

The first error can be observed in code 1. There is data
race on the pointer variableP (there is the same error aboutC).
There are temporary variables representing the current working
cells. A solution should be to declare these variables inside
the loops. We prefer the OpenMP solution, declaring them as
private for the parallel region. Instances of these variables
will be unique for each threads.

The second error is a counter access which is not protected.
We protect the access to this counter with#pragma omp
atomic. In this case, we can not be sure that this counter
must be shared among the threads. The next execution will
inform us if we are right or wrong.

e) Enhancement:The tests finally pass. The design is
then approved. The performance of our parallel implemen-
tation is now measured. The experiences are performed on
idkoiff, a 8 x AMD Opteron 875, which gives a total of 16
cores. The program is compiled with gcc-4.3.3. OpenMP is
integrated to gcc. We measure the speedup, executing the TNR
application with 1, 2, 4, 8, and 16 threads.

We first executed a modified version of TNR. In this version,
we voluntarily inverted the two nested loop for all the 6
parallelized functions. An example of this error is presented in
table II. This gross error, which can cause bad performances
in sequential execution, is catastrophic for parallel execution.
Indeed the memory is not accessed linearly, which causes
cache misses. This programing fault has been done in order
to show the performance differences which can result. This
difference is presented in figure 7.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 4 8 16

sp
ee

d
up

of procs

Well implemented nested loop
Implemented without shared directives

Bad implemented nested loop

Fig. 7. Different implementation speed up on idkoiff with a 720x 500
resolution video

Then we can tweak the OpenMP directives. We must look

ID Short Desc Description 1st access 2nd access
4 Write ! Write

data race
Memory write of P at ”c9nrnoise reduction.c”:20 conflicts with
a prior memory write of P at ”c9nrnoise reduction.c”:20 (output
dependence)

“c9nr noise
reduction.c”
:20

“c9nr noise
reduction.c”
:20

7 Read ! Write
data race

Memory write of count at ”c9nrnoise estimation.c”:87 conflicts with
a prior memory read of count at ”c9nrnoise estimation.c”:87 (anti
dependence)

“c9nr noise
estimation.c”
:87

“c9nr noise
estimation.c”
:87

TABLE I
THREAD CHECKER OUTPUT FORTNR EXECUTION

closely to theshared directives. For instance, in the source
code shown above (see 1), we must look closely to the
variablespucPBuf and pucCBuf. There are the matrices
pointers to the previous and current frames. We can notice
that during this parallel region, these matrices are only read.
If pucPBuf andpucCBuf are not declared as shared, their
content is copied for each thread at before each execution of
this parallel region. Applying good shared policy among the6
parallel regions improves another time the performances (see
7).

The scheduling can also be defined. We choose a static
scheduling. Indeed the primitive operations in the inner loop
are very stable, the execution time of each iteration shouldbe
almost equal. There is not load balancing issue in this case.
We also define to OpenMP how to split the iterations among
the threads.

The last step of enhancement is to transform the OpenMP
directives into native thread code. A good design would be to
create the threads only once, instead of recreating them for
each frame.

V. CONCLUSION

We have presented a parallelization method for embedded
applications, inspired from the software engineering develop-
ment models. It seems important that such methods exists;
parallel development is still young, and in constant evolution.
Even for small parallelization project, it is difficult to choose
the good parallel API, to find how to start in the existing
source code. Lots of mistakes have been done in software
development before software engineering; the same thing must
not append for parallel development.

This model still contains weaknesses, partly dues to the
tools. The most critic one is the enhancement one. Rewrite
the application with native threads, inspired by the OpenMP
patterns is not a good solution. I see two perspectives: either
modify the OpenMP tool, enabling the generation of native
embedded thread program; or find a way to extract the
intermediate code generated by OpenMP, making the parallel
patterns more explicit.

Works such as the Automatic Profile-Driven
Parallelization[12] are very promising. Indeed, if some
automatic parallelization is one day efficient, a methodology
like the one defined here would be obsolete, as it would be
able to produce quite good parallelism with very low effort.
parallelization methodology

REFERENCES

[1] S. Shende and A. Malony, “The TAU parallel performance system,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, p. 287, 2006.

[2] N. Bell Laboratories, Murray Hill, “Unix programmer’s manual, prof
command.”

[3] S. Graham, P. Kessler, and M. Mckusick, “Gprof: A call graph execution
profiler,” in Proceedings of the 1982 SIGPLAN symposium on Compiler
construction. ACM New York, NY, USA, 1982, pp. 120–126.

[4] K. Lindlan, J. Cuny, A. Malony, S. Shende, B. Mohr, R. Rivenburgh,
and C. Rasmussen, “A tool framework for static and dynamic analysis of
object-oriented software with templates,” inSupercomputing, ACM/IEEE
2000 Conference, 2000, pp. 49–49.

[5] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J. Acquaviva, and
W. Jalby, “MAQAO: Modular Assembler Quality Analyzer and Opti-
mizer for Itanium 2,” inThe 4th Workshop on EPIC architectures and
compiler technology, San Jose, 2005.

[6] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” inProceedings of the 2007 PLDI
conference, vol. 42, no. 6. ACM New York, NY, USA, 2007, pp.
89–100.

[7] J. Weidendorfer, M. Kowarschik, and C. Trinitis, “A toolsuite for
simulation based analysis of memory access behavior,”LECTURE
NOTES IN COMPUTER SCIENCE, pp. 440–447, 2004.

[8] W. Cohen, “Multiple architecture characterization of the linux build
process with OProfile,” inWorkshop on Workload Characterization,
2003.

[9] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and
Y. Zhou, “Cilk: An efficient multithreaded runtime system,”ACM
SigPlan Notices, vol. 30, no. 8, pp. 207–216, 1995.

[10] http://gcc.gnu.org/wiki/Graphite.
[11] D. Maydan, J. Hennessy, and M. Lam, “Effectiveness of Data Depen-

dence Analysis.”
[12] G. Tournavitis and B. Franke, “Towards Automatic Profile-Driven Par-

allelization of Embedded Multimedia Applications.”
[13] B. Nichols and D. Buttlar,Pthreads programming. O’Reilly Media,

Inc., 1996.
[14] L. Dagum, R. Menon, and S. Inc, “OpenMP: an industry standard

API for shared-memory programming,”IEEE Computational Science
& Engineering, vol. 5, no. 1, pp. 46–55, 1998.

[15] A. Jannesari, K. Bao, V. Pankratius, and W. Tichy, “Helgrind+: An
efficient dynamic race detector,” inProceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing-Volume
00. IEEE Computer Society, 2009, pp. 1–13.

[16] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen, “Unraveling Data Race
Detection in the IntelR Thread Checker,” inFirst Workshop on Software
Tools for Multi-core Systems (STMCS), in conjunction with IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
Citeseer, 2006.

[17] http://software.intel.com/en-us/articles/a-methodology-for-threading-
serial-applications/.

[18] W. Royce, “Managing the development of large software systems: con-
cepts and techniques,” inProceedings of the 9th international conference
on Software Engineering. IEEE Computer Society Press Los Alamitos,
CA, USA, 1970, pp. 328–338.

