A parallelization model for embedded applications

Master student: Jerome Reybért
Supervisors: Jean-Francois Mehawiguel Santanband Carlos Prada
* Mescal, Avenue Jean Kuntzmann, 38330 Montbonnot-Saintivia
t STMicroelectronics, 850 r Jean Monnet 38920 CROLLES

Abstract—The previous years have seen an important evolution to parallelize the code without having a deep understanding
in the embedded system domain, with the apparition of multi of this one.
processors and multi cores architectures. For the moment, th# s article is structured as follows. In section Il we bigefl

architectures are embedded specific, built with one processor and L. . )
several accelerators around it present existing tools to observe sequential code andgdtiti

The next ones will be based on many processors and core/accelShOWs techniques to implement parallel code. Then in _S‘EQtiO
erators. The software development should change as developing!V we propose our methodology to manage the parallelization
for a parallel system is completely different from a mono Section V presents an example of parallelization followdug

processor one. Furthermore, the software directory of industes methodology. The section VI gives a conclusion.
such as STMicroelectronics must be adapted, in order for the

applications to benefit all the available computing power of multi- Il. UNDERSTANDING AND OPTIMIZING PERFORMANCE

core systems. I . .
We propose to define a simple methodology to manage theA' The existing observation techniques

parallelization process of sequential and embedded applications.  There are several techniques and tools to gather informatio
about the execution of a program. The different techniques
can be gathered in four categorid¥:source cod®) compiler
I. INTRODUCTION 3) binary translatiord) sampling techniques .

Intrusion: This point must be taken into account to
Embedded systems manufacturers must now evolve ctgm are the analysis tools. The resulting data is important
multi-processor and multi-core architectures. The whal@a-c P y ) 9 b

. . but we must also consider the intrusion aspect of the
log of their software should be able to exploit these pdralle . : . .
: C ; . observation. Too much intrusion can disturb the program
architectures. It is impossible to rewrite all of them from . . B )
) ) execution and produce erroneous observation. This iotnusi

scratch. The held approach is to begin from the sequentiad

source code, and to transform it into a parallel version: {BUSt be carefully thought, especially when the source cede |

T Instrumented manually. If we use existing tools, the inbms
parallelize it. . . .
. . should have been already thought. In this case the intrusion
Parallel development needs important and specialized-dev

. . L €0 hould be predictable, and in some cases, corrected.
opment skills. For instance, developers specialized ingana

p;f(_)c_es.:,lmggr,] shou:d n(z:] haVT erltc;]ugh _(Ia_xpertI[[se tot_ p‘?ff{“e“z We are now going to compare the different techniques.
efciently themselves their algonthms. Two alternatiesst. 1) Source code:Gathering information in order to under-

« to provide to image processing experts some tools to gi¥gand the program behavior is a common task that every
them a simple parallelization method. programmer has already done since he is a student. The
» to give the opportunity to a parallel expert an opportitcommon error is trying to gather all the information manyall
nity to parallelize an algorithm in a domain he is noft will seem the easiest way, using well known primitives
comfortable with. as “gettimeofday” and “printf”. However, the developer is
Moreover, embedded system domain is confronted to maggnfronted to several problems:
specialties: signal processing for communication apptoa heterogeneous hardware=rom one specific platform to
and video processing for compression / decompression are another, counters accesses can be completely different.
common examples. The upcoming computation resources pro- The access method to the counters should be rewritten
vided by the parallel processing appearing technologienop  for every platform.
the opportunity to new domains such as security : finger print data representation The way to save and present the
recognition, face recognition. .. gathered data is important. Maybe the programmer will be
It seems difficult to hire one expert for each cited previous satisfied by the form of its traces, but it will be difficult for
domains. Moreover, even if we can provide them efficient the other to read it. A specific format implies to develop
parallelizing tools, they should as well be aware of specific the visualization tools for this given format.
parallel programming characteristics. For this work, we ar As we can see, reinventing the wheel each time we want to
interested in the other solution: a parallel system expastk- trace a program execution can have important consequences.
ing on all these various domains. He can not understand &Here are some tools which can help the developer to gather
the specialties he will face. We must give him the opporiuniinformation:



PAPI : Performance Application Programming Interfacenformation, it adds some profiling routines. TAU and PDT
PAPI provides predefined high level hardware evenere more complex than gprof to settle, but is more tunable in
summarized from popular processors and direct aeturn.
cess to low level native events of one particular This kind of trace is not so intrusive. The memory accesses
processor. PAPI is fully portable to a large number adre limited, as the profiler does not collect all the timesnspe
architectures. But it does not solve the trace formaito the functions, but just a sum of each. Furthermore,ehes
problem. times are stored into hashtables. The access time to ayartic

TAU : Tuning and Analysis Utilities[1] is a set of tools counter function does not consume too much.
providing easy ways to settle timers. TAU provides Some can say that adding some instrumentation code could
simple accesses to PAPI events. TAU is a good choipeoduce observation bias. As it adds function calls, it doul
for manually tracing an event, as we don't have tohange the way the compiler applies its optimizations. In ou
worry about memory and files. It also provides &ase, profiling for parallelizing, we are not expecting stcst
standard format for the traces. The resulted tracasalysis. On the contrary, we would rather compile without
can be used in some visualization tools. TAU alsoptimizations.
provides some trace format converters, in order for Furthermore, to produce profile like this is very simple.
the traces to work with several visualization tools. Most of the time, simply add an option into the compiling

OTF : Open Trace Format is is an XML standard formatommand line is enough (the option for gprof in gce {3g).
for traces. Developed for tracing parallel programs, gprof is often a good start to discover a program.
fits the sequential requirements, and is still in active 3) Binary translation: The program can also be profiled in
development. To use this format will make the tracass binary form, without having to compile it with profiling
portable among several visualization tools. methods. At a first glance, it seems a valuable method only

Some events are too specifics to be automated, that's wihy programs which we do not have the source code. But as it

manual tracing is still important. But for most of the eventgvould be useless, we will see that this technique bringsrothe
tracing becomes quickly a repetitive task. We will see tmat @pportunities. To profile an application in a binary form can
implicit tracing can be used for a majority of primitive even be done in two ways: statically or dynamically.

Furthermore, getting a global point of view of the applioati a) Static: There exists some tools as MAQAO[5] which
seems unrealistic, tracing this one manually. are able to extract knowledge from a compiled program. The

2) Compiler: As a program can be very large or verydea here is to parse the assembly code. This restrict the too

complex, to understand the program reading the source cddenalyze code for a specific platform, and even compiled by
might not be suitable. It is even more difficult if you are no& given compiler. In the case of MAQAQ, it works with Intel
familiar with the project. The goal here is to dissect thaltotplatform binary code, compiled with ICC. Static analysis ca
execution time among all the functions. Locating the part¥gin to extract call graph, control flow graph, list the Isop
where the program spends most of its execution is a goadd so on. With all that information, some analyzes can dyrea
start. The idea is simple, to start a timer at the beginning bé done.
each function and to stop this timer when the function return But static analysis often provides irrelevant results.. e.g
Bell laboratories early began to work in this directionstatistics about branches are only statistics. Cachestgffe
adding a tool named prof[2] in UNIX system. Rather thaare not predictable. MAQAO sticks up to fill the gaps with
recreating a tool to parse and analyze the source code, thymamic analysis. It will insert some instrumentation code
tool is located in the compiler. During the compilation pees, directly into assembly code. To profile at this level allows
timers are placed at the beginning of each functions, atwlaccess to interesting values: function parameters eades
before each return statement. This work is made easier shanked in load/store instructions. ..
to the parsing already made by the compiler. During the In binary translation, and in all other form of profiling,
execution, each time the program steps into a function, tetatic analysis can not be enough. The good aspect here is
relative counter is incremented and the timer starts. Whamuse results of both static and dynamic analyzes. Moreover
the execution flow exits this function, the time spent in thithere are good ideas, such as observing the distribution of
function is added to the total execution time of this functio parameters values for each function. However, this tool is
prof has then been improved inggprof[3]. In early 80’s, clearly dedicated to profile an application in order to to
a team working on Unix had some problem understandimgptimize the sequential version. Furthermore, we areicsest
the time spent in some functions, as these functions wheeoea given platform and compiler.
primitive ones, and called from different places in the pawg. b) Dynamic: Intrusion during execution can modify the
The global time spent in a function was not relevant enougtesults: the trace functions added, the resulted distiarat
Instead they preferred to split this time among the differeduring the optimization phase of the compilation, the asces
places from where the function was called. A more complete the memory to store the trace results, ...As we can try to
description of gprof is done in a following chapter. minimize this as much as possible, it will never be possible
TAU, used with the framework Program Database Toolkib reduce the intrusion to zero. Another considered saiuigo
(PDTI[4]), is able to analyze the source code. Using compiley simulate the execution and do all the trace work into the



simulation. B. Parallel programming model

Here, the tool is a kind of virtual machine dedicated to We have seen in the previous section how to analyze a
tracing, using just-in-time compilation techniques. A thsequential program in preparation for its parallelizatidhere

execution is emulated, the resulted overhead does notrllistdre lots of techniques to implement a parallel program. is th
the execution itself. The most famous tooMalgrind[6]. The part we will discuss some of the existing solutions.

conception of this tool allows the creation of external ones 1) How to express parallelism?A parallel programming
« memcheck for memory allocation profiling (in order tgnodel is a set of software technologies to express parallel

spot invalid allocation or deallocation) algorithms and match applications with the underlying pelra
« helgrind, tool capable of detecting race conditions iBYStems. It encloses the areas of applications, languages,
multithreaded code compilers, libraries, communication systems, and pdrk(e

« cachegrind[7], and its evolution callgrind, able to proelucThe targeted architecture is important, as the tools, aed ev

impressive call graph, to profile instruction cost and cactiBe Programing design depends on this. _
misses. It must be noted that the final implementation will be done

. ) using specific embedded system API. For our approach, we
Virtual machine trace tools are very powerful. Thanks to ﬂ'@refer to firstly implement on general purpose architectimre
simulation side, it is possible to get very precise infolioat oger to simply implement, test and debug them. Once the
for instance about caches, number of primitive instructiper parallel algorithm is approved, it is transformed in order t
line. These informations are difficult to gather when exe@@ut \york with embedded system API.
on a real platform, as all these counters can be accessed iffne targeted architecture here is SMP (symmetric multi-
different ways depending on the platforms, in the case thgyocessing); this architecture involves a multi-processoa
exist. The simulation of an execution will be exactly the 8ammyti-core computer where two or more identical processors
no matter the platform. Furthermore, the traced execuondan connect to a single shared main memory through a bus. In
not disturbed at all, as the tracing instructions are eméeéddis part we will only consider SMP parallelization solutio
in the simulator. The downside is that there is a huge overhea a) Language Specific:Para"e“sm can be expressed in
for the real execution time. Depending on the options pass§sleral ways. Specific languages have been designed for
t_o the simulator, the execution time can be 20 times to 2Qfrallel programing such as Ada or Cilk[9]. But language
times longer. specific can not be considered, as most of the embedded
4) Sampling techniqueAll the following techniques alter systems software source code is written in C.

the source code, or the binary code in order to extract some b) Auto-parallelization: There exists a large literature
information. They insert some special code at he beginnidg aabout auto-parallelization. Both popular compilers GGIJ[1
the end of the methods, with timing information, to profile itand Intel compiler try to implement auto-parallelism. Thea
Another way to profile an execution is to sample it. A samplingere is, with a simple compilation flag, detect parallelism
profiler observes the program counter at regular interddis. opportunities in sequential source code and provide a multi
results are not numerically exact, but a statistical apprax threaded application. However, the analysis provided lpgédh
tion. It could seem to produce less interesting results. iBut parallelizer is only static. It has been shown[11] that, oea-
practice, these results are more accurate: eral manner, static data dependence analyzers are notfpbwer

. this profiling method is not intrusive to the target proganough to prove that some loops are data dependences free on

ram, and do not produce side effects as memor caéﬁége programs. .
?nisses or breaking;) codue pipleline y Other works such as Thread Level Speculation[12] or Au-

« it does not over-evaluate small and often called functiohgM2tC Profile-Driven Pa_r allelization[12] prowde a dynia
« the program can run at nearly full speed ata dependence _angly5|s. TLS has an mterestlng_ap_proach.
The source code is instrumented during the compilation. It

As this kind of profiler works at a close level with theintroduces an “executable intermediate representatitimt
hardware, the tools are often hardware relaf@dnefor Intel, means the profiling is more aware high level code (like loop
CodeAnalystfor AMD, Sharkfor Apple. Other tools can be definition) and data structures. The program is executeerakv
used without platform concern, &profil€[8]. times, with multiple input datasets. For each executioe, th

5) Discussion: Two aspects must be considered to choogmofiler generate a trace file, which is analyzed to detea dat
the appropriate analysis todl) the efficiency of its analysis, dependences. If there are code regions which can not be
i.e. the trace tool should not be too intrusive and in the sardsambiguated by this analysis, the program is recompiled.
time provide accurate analysi) the utilization should not The instrumentation is done more finely on the disambiguated
require too much effort, in order to not to spend too mucaireas. Once the program has been fully inspected, OpenMP
time in the analysis phase. Valgrind is a good candidate, @disectives are added for areas which have been approved to be
it fills the two preceding points. Even if the simulation camparallelized.
take a long time, the execution is not disturbed by the tgacin But this kind of tools are still in research area. Their
tool. Furthermore, the program can easily be traced withoeifficiency is not proved, and it is hard to find implementagion
any modification. However, this lead should give results in the next years.



Personnal library AOP
Hand added PAPI gprof
TAU timers TAU PDT Profiled malloc library MAQAO Valgrind

Fig. 1. An overview of the existing possibilities to add pliofy and tracing methods during the program life.

2) Software programming languagein the prospect of minimize load balancing issued guided way, which looks
C programming, we will present existing APIs. The modike to the dynamic scheduling. The difference is that thet fir
famous is certainhypthread$13], the POSIX thread standardallocated chunks are bigger, and the next are smaller tdesmal
for threads. It is available for Unix systems, but also fofhis scheduling can be even more efficient for load balancing
Microsoft Windows withpthreads-w321t is a low-level in- issues.

terface that allows users to create and manipulate threadgpenMp also offers some directives to easily specify par-

(lightweight processes). All the threads of a single preceg)ie| hehaviors likecritical sectionor barrier.

share the same address space which does not need a . o .
explicit communication. On the other hand, it is the userwCan be noticed that OpenMP is implemented in popular

responsibility to protect variables from concurrent asess compilers such as GCC or Intel compiler. It allows to simply

with synchronization mechanisms (monitors and condijion compile OpenMP directive adding a flag during the compila-

Programing with pthreads is not very difficult. However, reeve%on'

to achieve simple tasks, coding turns out to be difficult and 3) How to check parallelism?Data races and dead locks
repetitive. are notoriously hard-to-find threading errors. Such unisyac

a) OpenMP: OpenMP[14] is an easy-to-use parallelizanized memory reference causes non-deterministic betsavior
tion portable interface which is based on a shared memd#pual debugging tools are inefficient to detect such problem
approach. Programming with OpenMP consists in insertingSuch tools are today available. Helgrind[15] is a thread
directives to the sequential code. Theses directives agd uslebugger which finds data races in multithreaded programs.
by the compiler to generate the parallel code for the prit-looks for memory locations which are accessed by more
cessors and cores. Its closeness to sequential programniftgh one thread, but for which no consistently used mutex
makes it wildly used for parallelization of existing seqtia@h lock can be found. Such locations are indicative of missing
algorithms. synchronization between threads.

The section of code that is meant to run in parallel is marked aAnother one is Intel Thread Checker[16]. Thread Checker
accordingly with a preprocessing directive. At this po s inyolved at different phases. Compiling a source codé wit
main thread forks into a defined number of threads. Eagly and the flag “t check”, Thread Checker instruments
thread run concurrently. After the execution of the patakel e code during the compilation. Then, the application is
code, the threads "join” back into the master thread, whighyacuted witht check_cl command. This program firstly
continues onward to the end of the program. The number ja&iryment the binary code, then supervise the execution. |
threads can be defined before the execution or specified fop8uments every memory reference instruction and every
specific parallel region in the source code. thread synchronization primitive in the program. When the

Two kind of parallelism can be defined with OpenMP.  instrumented program is executed, the runtime analysimeng

. Data parallelism: this kind of parallelism often appeargionitors every memory reference event and every thread

into loops. A simple example is a for loop doing calculasynchronization event and analyzes if there is a data races.
tion on a matrix. The matrix is split into several memoryrhread Checker supports Posix Threads and OpenMP. The
areas, and each thread will execute the same code onditgwback is that to benefit all the Thread Checker features,
own memory area. the source code must be compiled with. Some modification

« Task parallelism: in a parallel region, we define severédr the compilation may be needed in order to be compatible

tasks to run jointly. Each thread will execute independetith icc.

code. 4) Discussion:We have seen that automatic tools are still

For these parallel regions, it is possible to define mor®t mature enough to provide industrial results. OpenMP
precisely the OpenMP compiling behavior. We can specifies®ems to be a good compromise: it is simple to express
which variable areprivate and shared among the threads. parallelism, widely available, and the OpenMP behavior is
A data parallelism region can be scheduled ire)astatic simple to reproduce with native thread API. An interesting
way, which means the memory is split inthunksamong lead may be to extract the intermediate code produced by the
the threads before the loop execution. There are as madyenMP. It could make the translation work to native thread
chunks as threads) dynamicway, here the chunks are smallereasier. If some problems are encountered during the plaralle
There are more chunks than threads. When a thread finestecution, the use of tools like Intel Thread Checker islyeal
to compute a chunk, it gets another one. It is designed ¢ncouraged.



[1l. DEFINITION OF A PARALLELIZATION METHODOLOGY sold or otherwise distributed into a production environ-
We are now able to trace the execution of a sequential Ment. It may be necessary to add code that does not fit
softwares, with tools such as Valgrind and TAU. We can the original design to correct an unforeseen problem or
extract from these traces information to point out on whiatt p fill a customer request.
of the source code we must focus in order to parallelize thisThere are several ways to order these steps. The basic one
software. We have also seen solutions to implement paralielthe Code-and-fix model. Actually, it is more an absence
algorithm. of model. The developer just codes an initial version of the
A methodology must be defined to efficiently use thesgpplication, doing the analysis at the same time, and fixieg t
tools, and manage the process of parallelization. This odeth problems when he encounters one.
ology is inspired from software engineering discipline.isTh  The first well designed model has been teerfall model
connection between software engineering model and phralle follow the waterfall model, one proceeds from one phase to
programing has been first discussed in a white paper frahe next in a purely sequential manner. For example, one first
Intel[17]. We will first briefly present some of the developmhe completes requirements specification, which are set ineston
models defined by the software engineering. Then, we wiVhen the requirements are fully completed, one proceeds to
transpose this method for our parallelization problem. design. The waterfall model is argued by many to be a bad idea
. . in practice, mainly because of their belief that it is impbkes
A. Software engineering models L .
for any non-trivial project, to get one phase of a software

There are lots of methodologies to manage a project. Thigoduct's life cycle perfected before moving on to the next
subject is still an open software engineering topic. A medtho phases and learning from them.

ogy can be defined as a framework. This framework defines theanother one isiterative developmenit slices the deliver-

stages involved in the development of the software: in whigfhje pusiness value (system functionality) into iterati¢aiso

order should we consider the stages? when can we tell thatzaeq increments) at the beginning of the project. In each

stage is completed? how to make the transition between tW&ation a slice of functionality is delivered through sse

stages? what could force us to go back to the previous Sta@\%?cipline work, starting from the model/requirementtigh

The first related framework to manage software developmeggtine testing/deployment. This model is more flexible.

has been proposed in the 70’s by [18]. Our methodology has been inspired by this iterative model.

A standard framework for developing software consists on: o

requirements capture: This task’s goal is to determine B- Parallelizing model
the requirements for a new system or to modify an To parallelize a software is a new form of coding. A
existing one. This step must take into account the possilitdassical” project often begins from scratch, or usingdities.
conflicts which could exist between different stakeholdn some cases it can work upon an existing software, in order
ers. Requirements capture is a critical step to the succéssadd some functionalities or correct some errors. In our
of the project. case this is different. We do not want new functionalitiés t
analysis: All the requirements are analyzed, classifiegorogram is supposed to fulfill the requirements.
The road map of the project is defined, as well as the As there are not already any efficient tool to detect and
required work team. The platform and the programingorrect data dependencies, we must adoptode-and-test
language are chosen during this phase. approach. Using this approach without any road map improves
design: After software’s purposes and specifications arhe risks of failure. This is the main reason to define a softwa
determined, software developers will design a plan for development model. Our model is inspired by itieeative one,
solution. It includes low-level component and algorithmwith an implementation - testing - debugging phase flighty
implementation issues as well as the architectural viewdifferent.
implementation: The purpose of programming is to 1) Requirements capturethis step does not have the same
create a program that exhibits a certain desired behaviomportance as in a classical project. As the software ajread
(customization). The process of writing source code oftexxists, we don’t have to define its requirements. The main
requires expertise in many different subjects, includinggquirement remains the same, to improve as much as possible
knowledge of the application domain, specialized algdhe resource utilization on a multi-core platform.
rithms and formal logic. 2) Analysis: The analysis is done on the sequential version
testing: Software Testing is an empirical investigatiorof the code with the performance analysis tools presented in
conducted to provide stakeholders with information abosection Il in order to discover hot spots. They will reprasen
the quality of the product or service under test, respectitige different iterations of the development cycle. We mist a
the context in which it is intended to operate. Softwarey to define the maximum reachable speed up. We will use for
Testing also provides an objective, independent view tdfat the Amdahl’s law, that can give us the maximum speedup
the software to allow the business to appreciate afm the portion of sequential code. The goal here is not to
understand the risks at implementation of the softwarereach the maximum theoretical speed up. It can help us to
deployment and maintenance:Deployment starts after understand the parallelization. If the theoretical spepdsu
the code is appropriately tested, approved for release dod, we can not pretend to obtain good performances.



3) Design: There are some typical patterns in the source
code for the parallelization design. Some of these patteawis

been presented in section Ill. The call graph produced durin : :
the analysis iteration can give us interesting leads. Thhdri : v :
in the tree we will try to parallelize, the better should be th : . Global |
performances. On one hand, overhead dues to thread creation 5 Analysls I program |
and barrier are less important. On the other hand, the risks t
have data dependencies are higher. . \
During this phase, we must evaluate if the thread manage- A 4 '
ment overhead is covered by the execution time spend into the —( Design Implementation )

parallel region.
4) Implementation: The implementation, as discussed in
section lll, can take several forms. In the first iteration

] /

. . o Debu Testin :
offers very simple ways to implement parallel code. As a | ( g o ) .

downside, performances may be worst than with native thread T
implementation, apthread Our goal here is to test a design.
Once a design has been approved, it can be implemented with
low level techniques. This is discussed in the enhancement
iteration.

If the parallelization seems too difficult, involving too gtu ~ =r7rmnmnmsmnsnomosmmomesssosmsmsmsnsnsnsnes
changes in the algorithm or if the debug iteration shows that Fig. 2. Software development model for parallelizing project
the data dependences are too strong, it should be considered
to go back to the design iteration, and rethink it, going uppe

in callgraph tree. As we can see, the definition and the analysis are made only
5) Testing and debuggingThe parallel implementation once, at the beginning of the project. The analysis itematio
is then executed. For this phase, test unit sets are reaibfines the increments. These increments are managed one by
important, to ensure the produced data is correct. one, supposing that they are independent. For each inctemen
The number of cores used for execution is not defined. T% begin by try|ng naive approach, then we observe how the
more threads are running, the better are the chances tdsrevgaogram behaves. In some cases, we should reconsider the
parallel problems. There can be grouped in two categoriesgesign. Once the program is correct, we can go to the next
data races: they arise in software when separate procesgegement, or try to enhance the current one.
or threads of execution depend on some shared state. Op-
erations upon shgred states are qritical sections that MUSt |\, A pp|CATION OF THE METHODOLOGY ON AN
be atomic to avoid harmful collision between processes
or threads that share those states.
deadlocks: it refers to a specific condition when two or TNR means Temporal Noise Reduction. The goal of this
more processes are each waiting for each other to releagglication is to reduce the noise on all the frames comgosin
a resource, or more than two processes are waiting ®Wideo stream, taking into account some temporality.
resources in a circular chain.
Tools such asThread Checkerintel tool improve greatly A presentation
the research and the resolution of bugs such as data-races,
deadlocks situation and so on. 1) What is denoising:Noise is often present on video
6) EnhancementThis iteration has been added from thémage. This noise can have several sources. It can come from
classic software engineering model. Once the testing afft¢ capture of the video like random brightness variation or
debugging iterations are successfully completed, we can golor information produced by the sensor of a digital camira
to optimize some parts of the parallelization code, using fés also present on analog image recorded with a photographic
example native thread mechanisms. Reproduce an Openfili? having a too high light-sensitivity. Noise can also agpe
behavior should always be possible. during the compression of the video and the transmission of
In the case of embedded system, a program can not the data.
compiled with OpenMP. It makes this iteration obligatory. | All this noise is unwanted as it deteriorates the image
seems better in this case to consider this iteration ondiall quality. But cleaning noise means removing information- Ap
increments have been successfully parallelized. plying a too rough denoising method could alter the image,
7) Discussion:The iterations are now defined. We preserbosing some information, making it blur. It is also imparta
them in a more comprehensive way in figure 2. This diagrato provide a certain consistency between the different @&am
shows more explicitly the interactions between the itereti to prevent some video blinking effects.

Enhancement
Increment

EMBEDDED SYSTEM SOFTWARE TNR



10000

6000

4000

execution time (in micro sec)

2000

[

2) Spatio-temporal noise reductionSpatio-temporal de-

noising, as it is written, means denoising using two factors

space and time. The spatial denoising is the classic method. 8000 -

It consists in analyzing an image by looking for important

differences between pixels and its neighbors. When it finds

a pixel with an high contrast comparing to its neighbors, it

applies a transformation to the color of this pixel, abow th L |

mean of the neighbors color. Spatial denoising is applied on

each video frame as independent images. |

The temporal denoising is the next step. We perform a

motion detect filter and a temporal filter on a frame, takirtg in ‘.l -

account the adjacent frames. To simplify, we get the previou 1

denoised image, and apply it to the current image like a filter esimate_roise tampora_nose spalal nose moton detect fading bypass

On the actual image, we will perform the spatial denoising, o o

taking into account the previous image filter. It allows tplgp Egctlllon The execution time among the iterations seems to beeshabeach

almost the same denoising method on this image, limiting a '

blinking effect.

3) STMicroelectronics implementatiorthe TNR applica- these images with an image set produced by the sequential

tion must be seen as a part of a larger program for video decw@+sion.

ing. In embedded systems, it is between the video decoder an@) Analysis: We begin by tracing the sequential version of

the output stream. The version used for the parallelizatish the program. For that, we prefer to use Valgrind. As we have

is a standalone one. It means it can be compiled and execuge@n above, Valgrind is preferred because it is not ardhitec

on a computer. The input streaming (coming from the decod@f) compiler dependent, and measurements are still accurate

and the output streaming are simulated as reading and gritin We executeTNR with a set of 41 images. The result

files on the hard disk. of this execution is presented in figure IV-B2. Nearly

The TNR application takes as input parameters the paifl the execution time is spend in 6 functionsypass,

where images to be denoised are stored, the path to store@féi mat e_noi se, t enpor al _noi se_r educti on,

denoised images, and the number of images. Each single im&gat i al _noi se_reduction, notion_detect and

is stored in 3 different files: one file for each channel Y, U anidadi ng. This kind of callgraph form suggests us that these

V. This behavior reflects how the program works in the glob& functions are executed ones after the others in a loopeTher

decoding software. The images to be denoised have alre&d§ called from one functiorg9nr _t op. This should make

been decoded (e.g. by an H264 algorithm). The image is iBe parallelization easier, as the 6 consuming functioms ar

compressed at all, in broad outlinieizel = loctet. For a called in the same function.

video, each file will have the same resolution and the sameWVe can notice that9nr _t op is called 82 times, whereas

size. This should produce a predictable execution. there are 41 images. A further look into the code shows us that

For each image, the program will work on even then dif€ image file is split into two 'buffers:.onef for the even lines

odd lines, as two separated and independent images. As trfité another one for the odd lines. It is difficult to guarantee

is not complete documentation about the TNR application, Wit it seems that the computation is independent for both

only can guess why the denoising operation is split among tReffers. _ o _ _

lines. We can deduce that this denoising algorithm is done fo Y& can extract an interesting information from this call-

an interlaced video (like common analog television signalgraph. There is the execution time passed in each function

The result should be better for this kind of output. (in percentage) according to the total execution time. We ca
deduce from it that a naive approach should have poor results

B. Use of the model because the load balancing would be a disaster among the

functions.

The previous documentation work has been done to preseniWe tried to measure more accurately the execution time
the TNR algorithm in this paper. We must consider that thsf the 6 functions among the iterations. The results of this
developer in charge of parallelizing such program has rist thrace are shown in figure 4. We can observe that among the
information. 82 iterations, the execution time of each function is stable

1) Requirements capturefNR is a well known STMicro- except maybe for theadi ng function. However, this stability
electronics algorithm. The goal here is not to reach extreriee a good sign for the parallelization, as the execution is
performance, but to show the validity of our parallelizatiopredictable. We will see the consequences for the design in
model. The second objective is of course to obtain the sarme next paragraph.
denoised image quality. As it is difficult to judge the image As we only focus on thec9nr t op function, we can
quality, we want the exact same images. We will test thignore the time taken by processes like loading and stor-
resulted image set, comparing byte per byte wdifi tool, ing the images. We can not parallelize these processes, as



Fig. 3. The result of the TNR execution traced by valgrinde Bhmain functions appear clearly as leaves.

they represent the data transmission in the real situatibhis data dependence is very strong, as we must wait for the
(in the embedded system). We can now almost distinguiphevious image to be generated (i.e. the previous image must
the parallelizable sections and the one they can not be: tieve been processed by the last of the 6 functions) before we
parallelizable portion is almost 95%. Thanks to the Amdahltan begin to compute the next image. Even a pipeline design
law, we can predict the maximum reachable speed up for(@scribed in figure 5) is not possible.

processors:

Speedup(8) = (1 —0.95) + 8 x0.95 = 7.65

pipeline
bulter

The goal here is not to reach at any cost this maximum speed
up, but to give a better comprehension of the paralleliatio

3) Design, implementation, test and debus it has been Fig- 5. A pipeline design. There exists a data dependendslgrroamong
discussed previously, the higher in the callgraph we try engii;”;‘znz denoise a frame, we need the current frame andevieys
parallelize, better should be the performances. Indeed, we
minimize the overhead effects of thread creations. In this

paragraph, we will present the different approaches wel,trie b) Parallglizing among the demismg proc_esséﬁnen
and try to explain why they failed. we tried to naively parallelize the 6 time consuming funetio

a) Parallelizing among the imagesThe higher we can We call thismassive parallelizationThis design is presented
try to parallelize is at the level ot9nr top call. This in figure 6. Each function is seen as a task, and these task can

function is mainly composed of a for loop. Each iteration N in parallel for each iteration.
this loop represents one frame of the video. The easiestavay‘gragma omp paraliel {
. . . . . #pragma omp task
parallelize it should be to denoise several images in theesaMsading (. . .):
time. Before to spend a long time reading the source cod#®agma omp task { _

K . . *pucNLE = estimatenoise (. . .);
we can easily try to parallelize. Trying to understand th&ada motion_detect(. . .);
dependences here is really a hard work. There are about 20

. . . . #pragma omp task {
pointers. It is not obvious at all how the pointers are ateda temporal noise reduction (. .
from one iteration to the other. :mpg:;:-:g:zi-:ggﬂg::gg E :

The implementation is easy. We addpragnma onp byp,fss(_‘ Y o
paral | el for just above the main loop. Then, we move
the declaration and the allocation of the pointers whicH wil
contain images data inside the for loop. It will produce an
overhead due to the memory allocation for each iterationitbu
is a simple way to firstly test our implementation. The resulilt
performance are satisfying, knowing the overheads duego th

memory allocation.

—_———

estimate
noise
temporal
noise
reduction
spatial
noise
I reduction '

read original write denoised

However, the tests are negatives. There are binary differ- et
ences between a denoised images produced by the sequential ! /
algorithm and one produced by the parallel algorithm. Logki
further, we can notice that the first produced image does not
have any differences. This points out one of the main problem foeach rame™~- bypass

for parallelize TNR As it is a spatio-temporal denoiser, the

algorithm takes into account the previous image, but th@. 6. A naive massive parallelization design. It must beaeatithe strong
previous denoisedimage. This is explained in the figure 5.existing barriers, from where load balancing problems cayldear.



int tab[size i][size_j] int tab[size i][size_j]
for (i = 0; i < size_i; i++) for (j = 0; i < size_i; i++)
for (j = 0; j < size_j; j++) for (i = 0; j < size_j; j++)
i1l .

} =
} tab[i][j] = ..

bypass (. . .);
spatialLnoise_reduction (. . .);

tab[i][j] = ...
TABLE I

We can predict that the performance should be quite poGrMPARISON BETWEEN GOOD AND BAD NESTED LOOP IMPLEMENTATION
Regarding to the sequential analysis (see figure IV-B2), theMEMORY é‘g&f’ifETNOTTT%E(@fARéXf IDO*NES?;TEAE;[ '] [JJ)] -THIS IS
6 functions does not have the same execution time average. -
As it has been discussed above, the load balancing should
be bad: the threads should all wait for the thread executing

fadi ng for each iteration. We can try to distribute in a,4e5 TNR application is then executed with Thread Checker.
better way the load, aggregating the functions in order faf prief overview of the results are shown in table |.
each thread to take about one third of the execution for eachrpe first error can be observed in code 1. There is data

execution (see pseudo code example in 6). However, thizq on the pointer variabR (there is the same error abddjt
kind of parallelization is very architecture dependentréié  There are temporary variables representing the currerkingr
could be efficient with 3 computation units. cells. A solution should be to declare these variables @sid

the loops. We prefer the OpenMP solution, declaring them as

Trying to implement this design, we faced a second dafd  yat e for the parallel region. Instances of these variables
dependence problem. There is a strong dependence betwgginge unique for each threads.

almost each functions. Each function take into parameter on The second error is a counter access which is not protected.
or several results from previous functions. This involvieatt |, protect the access to this counter withr agma onp
a given function must wait that the previous function finisk; o ¢. In this case. we can not be sure that this counter

its execution; moreover, they must be executed in the righs; pe shared among the threads. The next execution will
order. There could be a solution, where the next functiqﬁform us if we are right or wrong.

can work on already denoised areas in the image. But this e) EnhancementThe tests finally pass. The design is

solution inyolves a Ion_g expertise of the source code, andya,, approved. The performance of our parallel implemen-
very hard implementation. tation is now measured. The experiences are performed on
idkoiff, a 8 x AMD Opteron 875, which gives a total of 16
cores. The program is compiled with gcc-4.3.3. OpenMP is
integrated to gcc. We measure the speedup, executing the TNR
¢) Fine grain: As the previous approaches did not Workapplication with 1, 2, 4, 8, and 16 threads.
we must work deeper in the callgraph. The next level in e first executed a modified version of TNR. In this version,
the callgraph is the last: we work now at theaves stage \ve voluntarily inverted the two nested loop for all the 6
The parallelization will be designed inside the 6 de”OiS“”\Qarallelized functions. An example of this error is preserin
functions. table 1. This gross error, which can cause bad performances
All the functions have the same pattern: nested for j, sequential execution, is catastrophic for parallel esea.
loop. These nested loops work on the image matrix, applyingdeed the memory is not accessed linearly, which causes
primitive calculation on each cells. A first look into theseps ~zche misses. This programing fault has been done in order

let us think that each iteration should be independent. Thi$ show the performance differences which can result. This
assumption will be confirmed by the test phase. difference is presented in figure 7.

We present here the parallelization for the simplest of the
6 functions,t enpor al _noi se_reducti on. The paral- 5 e
lelization directive is applied to the outer loop. OpenMRlie e plemepied nosed oop
to efficiently parallelize a nested loop like this. Parddlielg
the inner loop would be a very bad design, generating a huge
overhead for the multiple thread creations.

3

This naive solution seems not feasible.

4

speed up

Listing 1. Example of a parallelized loop in TNR program
#pragma omp parallel for 25
for ( = 0;y < ulYInSize;y++ ) {

for X = 0;x < ulXInSize;x++ ) {
P =% ( pucPPBuf + y=x ulXInSize + x );

2

15

—_ o ~<

C = % ( pucCBuf + y x ulXInSize + x );
* pucOutBuf + wulXInSize + x ) = (U8 ) ( ( Cx* ( e
32 — ulTempFactor ) + P+ ( ulTempFactor ) + 16 ) 1 2 4 8 16
>> 5 )’ # of procs
} Fig. 7.  Different implementation speed up on idkoiff with a 72600
} resolution video

d) : Tests shows that something is wrong. As described
in paragraph 1V-B3a, there are differences in the denoisedi Then we can tweak the OpenMP directives. We must look



ID | Short Desc Description 1st access 2nd access
4 | Write — Write | Memory write of P at "c9nrnoise reduction.c”:20 conflicts with “c9nr_noise | “c9nr_noise
data race a prior memory write of P at "c9nnoise reduction.c”:20 (output reduction.c” | reduction.c”

dependence) :20 :20
7 | Read — Write | Memory write of count at "c9nmoise estimation.c”:87 conflicts with “c9nr_noise | “c9nr_noise
data race a prior memory read of count at "c9mroise estimation.c”:87 (anti estimation.c” | estimation.c”

dependence) :87 :87

TABLE |
THREAD CHECKER OUTPUT FORTNR EXECUTION
closely to theshar ed directives. For instance, in the source REFERENCES

code shown above (see 1), we must look closely to thﬂ]
variablespucPBuf and pucCBuf. There are the matrices
pointers to the previous and current frames. We can notic[g]
that during this parallel region, these matrices are ongdre

If pucPBuf andpucCBuf are not declared as shared, their[3]
content is copied for each thread at before each execution of
this parallel region. Applying good shared policy among &he 4]
parallel regions improves another time the performances (s
7).

The scheduling can also be defined. We choose a statj
scheduling. Indeed the primitive operations in the inn@plo
are very stable, the execution time of each iteration shbald
almost equal. There is not load balancing issue in this casg,
We also define to OpenMP how to split the iterations among
the threads.

The last step of enhancement is to transform the OpenM
directives into native thread code. A good design would be to
create the threads only once, instead of recreating them for
each frame. (6]

V. CONCLUSION

9

We have presented a parallelization method for embedde[d
applications, inspired from the software engineering bgve

X . [10]
ment models. It seems important that such methods exnﬁsﬂ
parallel development is still young, and in constant evofut
Even for small parallelization project, it is difficult to cbse [12]
the good parallel API, to find how to start in the existings
source code. Lots of mistakes have been done in software
development before software engineering; the same thirsg mi4!
not append for parallel development.

This model still contains weaknesses, partly dues to tfs)
tools. The most critic one is the enhancement one. Rewrite
the application with native threads, inspired by the OpenMP
patterns is not a good solution. | see two perspectiveserreitine]
modify the OpenMP tool, enabling the generation of native
embedded thread program; or find a way to extract the
intermediate code generated by OpenMP, making the parallel
patterns more explicit. (7]

Works such as the Automatic Profile-Driven[ls]
Parallelization[12] are very promising. Indeed, if some
automatic parallelization is one day efficient, a methogglo
like the one defined here would be obsolete, as it would be
able to produce quite good parallelism with very low effort.
parallelization methodology

S. Shende and A. Malony, “The TAU parallel performanceteys’
International Journal of High Performance Computing Applions
vol. 20, no. 2, p. 287, 2006.

N. Bell Laboratories, Murray Hill, “Unix programmer’s maaly prof
command.”

S. Graham, P. Kessler, and M. Mckusick, “Gprof: A call gnagxecution
profiler,” in Proceedings of the 1982 SIGPLAN symposium on Compiler
construction ACM New York, NY, USA, 1982, pp. 120-126.

K. Lindlan, J. Cuny, A. Malony, S. Shende, B. Mohr, R. Ribairgh,
and C. Rasmussen, “A tool framework for static and dynamic aisabf
object-oriented software with templates,”Stupercomputing, ACM/IEEE
2000 Conferenge2000, pp. 49-49.

ﬂﬁ L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J. Acquay and

W. Jalby, “MAQAO: Modular Assembler Quality Analyzer and ®pt
mizer for Itanium 2,” inThe 4th Workshop on EPIC architectures and
compiler technology, San Jgs2005.

] N. Nethercote and J. Seward, “Valgrind: A framework foatgweight

dynamic binary instrumentation,” ifProceedings of the 2007 PLDI
conference vol. 42, no. 6. ACM New York, NY, USA, 2007, pp.
89-100.

[9 J. Weidendorfer, M. Kowarschik, and C. Trinitis, “A toduite for

simulation based analysis of memory access behavidECTURE
NOTES IN COMPUTER SCIENCIBp. 440-447, 2004.

W. Cohen, “Multiple architecture characterization dfet linux build
process with OProfile,” inWorkshop on Workload Characterization
2003.

] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randafid

Y. Zhou, “Cilk: An efficient multithreaded runtime systemACM
SigPlan Noticesvol. 30, no. 8, pp. 207-216, 1995.
http://gcc.gnu.org/wiki/Graphite.

D. Maydan, J. Hennessy, and M. Lam, “Effectiveness ofaD@epen-
dence Analysis.”

G. Tournavitis and B. Franke, “Towards Automatic Profileven Par-
allelization of Embedded Multimedia Applications.”

B. Nichols and D. ButtlarPthreads programming O’Reilly Media,
Inc., 1996.

L. Dagum, R. Menon, and S. Inc, “OpenMP: an industry stadd
API for shared-memory programminglEEE Computational Science
& Engineering vol. 5, no. 1, pp. 46-55, 1998.

A. Jannesari, K. Bao, V. Pankratius, and W. Tichy, “Held+: An
efficient dynamic race detector,” iProceedings of the 2009 IEEE
International Symposium on Parallel&Distributed ProcessiVolume
00. IEEE Computer Society, 2009, pp. 1-13.

U. Banerjee, B. Bliss, Z. Ma, and P. Petersen, “UnraxglData Race
Detection in the InteR) Thread Checker,” ifrirst Workshop on Software
Tools for Multi-core Systems (STMCS), in conjunction wkE/ACM
International Symposium on Code Generation and OptinonatCGO)
Citeseer, 2006.
http://software.intel.com/en-us/articles/a-metblody-for-threading-
serial-applications/.

W. Royce, “Managing the development of large softwarsteys: con-
cepts and techniques,” Proceedings of the 9th international conference
on Software Engineering IEEE Computer Society Press Los Alamitos,
CA, USA, 1970, pp. 328-338.



